Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 25(29): 19976-19985, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37461330

RESUMO

The effect of humidity on the electrical conductivity of single-walled carbon nanotube (SWCNT) films depends on both the conductivity of individual nanotubes and the electrical contacts between them. Here, we study these factors by comparing the sensor response of nanotubes with fluorine- and nitrogen-containing groups attached to the sidewalls. Experiments carried out in a wide range of relative humidity (RH) at room and elevated temperatures showed that the conductivity of non-functionalized SWCNTs and contacts between them decreases upon the adsorption of water molecules. Covalent fluorination reduces the conductivity of SWCNTs and significantly increases the sensitivity of the film to low concentrations of water vapor. The response at high RH decreases due to the large number of water molecules adsorbed on the conductive regions of the nanotubes. As a result of substitutional reactions of fluorinated SWCNTs with dimethylformamide and ethylenediamine, nitrogen-containing groups are added, the amount of which, however, is much less than the amount of fluorine. This modification of the SWCNTs improves intertube contacts in the film and increases the surface area for water adsorption. Our results show that an increase in the number of functional groups on the SWCNT surface enhances the sensitivity of the sensor to low water concentrations and worsens the response at high RH. SWCNTs modified with ethylenediamine have the highest sensitivity over the entire range of RH.

2.
Materials (Basel) ; 16(4)2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36837276

RESUMO

Diamond is an important material for electrical and electronic devices. Because the diamond is in contact with the metal in these applications, it becomes necessary to study the metal-diamond interaction and the structure of the interface, in particular, at elevated temperatures. In this work, we study the interaction of the (100) and (111) surfaces of a synthetic diamond single crystal with spattered titanium and molybdenum films. Atomic force microscopy reveals a uniform coating of titanium and the formation of flattened molybdenum nanoparticles. A thin titanium film is completely oxidized upon contact with air and passes from the oxidized state to the carbide state upon annealing in an ultrahigh vacuum at 800 °C. Molybdenum interacts with the (111) diamond surface already at 500 °C, which leads to the carbidization of its nanoparticles and catalytic graphitization of the diamond surface. This process is much slower on the (100) diamond surface; sp2-hybridized carbon is formed on the diamond and the top of molybdenum carbide nanoparticles, only when the annealing temperature is raised to 800 °C. The conductivity of the resulting sample is improved when compared to the Ti-coated diamond substrates and the Mo-coated (111) substrate annealed at 800 °C. The presented results could be useful for the development of graphene-on-diamond electronics.

3.
Nanomaterials (Basel) ; 11(5)2021 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-33925739

RESUMO

Robust electrode materials without the addition of binders allow increasing efficiency of electrical storage devices. We demonstrate the fabrication of binder-free electrodes from modified single-walled carbon nanotubes (SWCNTs) for electrochemical double-layer capacitors (EDLCs). Modification of SWCNTs included a sonication in 1,2-dichlorobenzene and/or fluorination with gaseous BrF3 at room temperature. The sonication caused the shortening of SWCNTs and the splitting of their bundles. As a result, the film prepared from such SWCNTs had a higher density and attached a larger amount of fluorine as compared to the film from non-sonicated SWCNTs. In EDLCs with 1M H2SO4 electrolyte, the fluorinated films were gradually defluorinated, which lead to an increase of the specific capacitance by 2.5-4 times in comparison with the initial values. Although the highest gravimetric capacitance (29 F g-1 at 100 mV s-1) was observed for the binder-free film from non-modified SWCNT, the fluorinated film from the sonicated SWCNTs had an enhanced volumetric capacitance (44 F cm-3 at 100 mV s-1). Initial SWCNT films and defluorinated films showed stable work in EDLCs during several thousand cycles.

4.
Nanomaterials (Basel) ; 10(5)2020 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-32344811

RESUMO

Filling of single-walled carbon nanotubes (SWCNTs) and extraction of the encapsulated species from their cavities are perspective treatments for tuning the functional properties of SWCNT-based materials. Here, we have investigated sulfur-modified SWCNTs synthesized by the ampoule method. The morphology and chemical states of carbon and sulfur were analyzed by transmission electron microscopy, Raman scattering, thermogravimetric analysis, X-ray photoelectron and near-edge X-ray absorption fine structure spectroscopies. Successful encapsulation of sulfur inside SWCNTs cavities was demonstrated. The peculiarities of interactions of SWCNTs with encapsulated and external sulfur species were analyzed in details. In particular, the donor-acceptor interaction between encapsulated sulfur and host SWCNT is experimentally demonstrated. The sulfur-filled SWCNTs were continuously irradiated in situ with polychromatic photon beam of high intensity. Comparison of X-ray spectra of the samples before and after the treatment revealed sulfur transport from the interior to the surface of SWCNTs bundles, in particular extraction of sulfur from the SWCNT cavity. These results show that the moderate heating of filled nanotubes could be used to de-encapsulate the guest species tuning the local composition, and hence, the functional properties of SWCNT-based materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA