Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Eur J Med Chem ; 69: 931-41, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24161679

RESUMO

Hepatitis C virus (HCV) NS5B polymerase is an important and attractive target for the development of anti-HCV drugs. Here we report on the design, synthesis and evaluation of twenty-four novel allosteric inhibitors bearing the 4-thiazolidinone scaffold as inhibitors of HCV NS5B polymerase. Eleven compounds tested were found to inhibit HCV NS5B with IC50 values ranging between 19.8 and 64.9 µM. Compound 24 was the most active of this series with an IC50 of 5.6 µM. A number of these derivatives further exhibited strong inhibition against HCV 1b and 2a genotypes in cell based antiviral assays. Molecular docking analysis predicted that the thiazolidinone derivatives bind to the NS5B thumb pocket-II (TP-II). Our results suggest that further optimization of the thiazolidinone scaffold may be possible to yield new derivatives with improved enzyme- and cell-based activity.


Assuntos
Antivirais/farmacologia , Hepacivirus/efeitos dos fármacos , Hepacivirus/enzimologia , Tiazolidinas/farmacologia , Proteínas não Estruturais Virais/antagonistas & inibidores , Antivirais/síntese química , Antivirais/química , Antivirais/classificação , Células Cultivadas , Relação Dose-Resposta a Droga , Genótipo , Hepacivirus/genética , Humanos , Testes de Sensibilidade Microbiana , Modelos Moleculares , Estrutura Molecular , Relação Estrutura-Atividade , Tiazolidinas/síntese química , Tiazolidinas/química , Proteínas não Estruturais Virais/metabolismo
2.
Bioorg Med Chem ; 21(11): 3262-71, 2013 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-23598249

RESUMO

Hepatitis C virus (HCV) NS5B polymerase is a key target for anti-HCV therapeutics development. Herein, we report the synthesis and in vitro evaluation of anti-NS5B polymerase activity of a molecular hybrid of our previously reported lead compounds 1 (IC50=7.7 µM) and 2 (IC50=10.6 µM) as represented by hybrid compound 27 (IC50=6.7 µM). We have explored the optimal substituents on the terminal phenyl ring of the 3-phenoxybenzylidene moiety in 27, by generating a set of six analogs. This resulted in the identification of compound 34 with an IC50 of 2.6 µM. To probe the role of stereochemistry towards the observed biological activity, we synthesized and evaluated the D-isomers 41 (IC50=19.3 µM) and 45 (IC50=5.4 µM) as enantiomers of the l-isomers 27 and 34, respectively. The binding site of compounds 32 and 34 was mapped to palm pocket-I (PP-I) of NS5B. The docking models of 34 and 45 within the PP-I of NS5B were investigated to envisage the molecular mechanism of inhibition.


Assuntos
Antivirais/síntese química , Hepacivirus/química , Fenilalanina/química , RNA Polimerase Dependente de RNA/antagonistas & inibidores , Tiazolidinas/síntese química , Proteínas não Estruturais Virais/antagonistas & inibidores , Antivirais/química , Sítios de Ligação , Desenho de Fármacos , Hepacivirus/enzimologia , Simulação de Acoplamento Molecular , RNA Polimerase Dependente de RNA/química , Estereoisomerismo , Relação Estrutura-Atividade , Tiazolidinas/química , Proteínas não Estruturais Virais/química
3.
Eur J Med Chem ; 58: 258-64, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23127989

RESUMO

Hepatitis C virus (HCV) NS5B polymerase is a key target for the development of anti-HCV drugs. Here we report on the identification of novel allosteric inhibitors of HCV NS5B through a combination of structure-based virtual screening and in vitro NS5B inhibition assays. One hundred and sixty thousand compounds from the Otava database were virtually screened against the thiazolone inhibitor binding site on NS5B (thumb pocket-2, TP-2), resulting in a sequential down-sizing of the library by 2.7 orders of magnitude to yield 59 NS5B non-nucleoside inhibitor (NNI) candidates. In vitro evaluation of the NS5B inhibitory activity of the 59 selected compounds resulted in a 14% hit rate, yielding 8 novel structural scaffolds. Of these, compound 1 bearing a 4-hydrazinoquinazoline scaffold was the most active (IC(50) = 16.0 µM). The binding site of all 8 NNIs was mapped to TP-2 of NS5B as inferred by a decrease in their inhibition potency against the M423T NS5B mutant, employed as a screen for TP-2 site binders. At 100 µM concentration, none of the eight compounds exhibited any cytotoxicity, and all except compound 8 exhibited between 40 and 60% inhibition of intracellular NS5B polymerase activity in BHK-NS5B-FRLuc reporter cells. These inhibitor scaffolds will form the basis for future optimization and development of more potent NS5B inhibitors.


Assuntos
Descoberta de Drogas , Inibidores Enzimáticos/farmacologia , Hidrazinas/farmacologia , Quinazolinonas/farmacologia , Proteínas não Estruturais Virais/antagonistas & inibidores , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/química , Ensaios de Triagem em Larga Escala , Hidrazinas/química , Modelos Moleculares , Estrutura Molecular , Quinazolinonas/química , Relação Estrutura-Atividade , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo
4.
Eur J Med Chem ; 49: 191-9, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22280819

RESUMO

Structure-based studies led to the identification of a constrained derivative of S-trityl-l-cysteine (STLC) scaffold as a candidate inhibitor of hepatitis C virus (HCV) NS5B polymerase. A panel of STLC derivatives were synthesized and investigated for their activity against HCV NS5B. Three STLC derivatives, 9, F-3070, and F-3065, were identified as modest HCV NS5B inhibitors with IC(50) values between 22.3 and 39.7 µM. F-3070 and F-3065 displayed potent inhibition of intracellular NS5B activity in the BHK-NS5B-FRLuc reporter and also inhibited HCV RNA replication in the Huh7/Rep-Feo1b reporter system. Binding mode investigations suggested that the STLC scaffold can be used to develop new NS5B inhibitors by further chemical modification at one of the trityl phenyl group.


Assuntos
Antivirais/química , Antivirais/farmacologia , Cisteína/análogos & derivados , Hepacivirus/enzimologia , RNA Polimerase Dependente de RNA/antagonistas & inibidores , Linhagem Celular , Cisteína/química , Cisteína/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Hepacivirus/efeitos dos fármacos , Hepatite C/tratamento farmacológico , Hepatite C/enzimologia , Humanos , Modelos Moleculares , RNA Viral/metabolismo , RNA Polimerase Dependente de RNA/metabolismo
5.
Eur J Med Chem ; 46(10): 5138-45, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21893371

RESUMO

Hepatitis C virus (HCV) NS5B polymerase is a key target for anti-HCV therapeutics development. Here we report the synthesis and biological evaluation of a new series of α,γ-diketo acids (DKAs) as NS5B polymerase inhibitors. We initiated structure-activity relationship (SAR) optimization around the furan moiety of compound 1a [IC(50) = 21.8 µM] to achieve more active NS5B inhibitors. This yielded compound 3a [IC(50) = 8.2 µM] bearing the 5-bromobenzofuran-2-yl moiety, the first promising lead compound of the series. Varying the furan moiety with thiophene, thiazole and indazole moieties resulted in compound 11a [IC(50) = 7.5 µM] bearing 3-methylthiophen-2-yl moiety. Finally replacement of the thiophene ring with a bioisosteric phenyl ring further improved the inhibitory activity as seen in compounds 21a [IC(50) = 5.2 µM] and 24a [IC(50) = 2.4 µM]. Binding mode of compound 24a using glide docking within the active site of NS5B polymerase will form the basis for future SAR optimization.


Assuntos
Ácidos/química , Ácidos/farmacologia , Antivirais/química , Antivirais/farmacologia , Hepacivirus/enzimologia , Proteínas não Estruturais Virais/antagonistas & inibidores , Proteínas não Estruturais Virais/metabolismo , Ácidos/síntese química , Antivirais/síntese química , Hepacivirus/efeitos dos fármacos , Hepatite C/tratamento farmacológico , Humanos , Modelos Moleculares , Ligação Proteica , RNA Polimerase Dependente de RNA/antagonistas & inibidores , RNA Polimerase Dependente de RNA/metabolismo , Relação Estrutura-Atividade
6.
PLoS One ; 5(1): e8709, 2010 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-20090849

RESUMO

BACKGROUND: Descriptions of dengue immunopathogenesis have largely relied on data from South-east Asia and America, while India is poorly represented. This study characterizes dengue cases from Pune, Western India, with respect to clinical profile and pro-inflammatory cytokines. METHODOLOGY/PRINCIPAL FINDINGS: In 2005, 372 clinically suspected dengue cases were tested by MAC-ELISA and RT-PCR for dengue virus (DENV) aetiology. The clinical profile was recorded at the hospital. Circulating levels of IFN-gamma, TNF-alpha, IL-6, and IL-8 were assessed by ELISA and secondary infections were defined by IgM to IgG ratio. Statistical analysis was carried out using the SPSS 11.0 version. Of the 372 individuals, 221 were confirmed to be dengue cases. Three serotypes, DENV-1, 2 and 3 were co-circulating and one case of dual infection was identified. Of 221 cases, 159 presented with Dengue fever (DF) and 62 with Dengue hemorrhagic fever (DHF) of which six had severe DHF and one died of shock. There was a strong association of rash, abdominal pain and conjunctival congestion with DHF. Levels of IFN-gamma were higher in DF whereas IL-6 and IL-8 were higher in DHF cases (p<0.05). The mean levels of the three cytokines were higher in secondary compared to primary infections. Levels of IFN-gamma and IL-8 were higher in early samples collected 2-5 days after onset than late samples collected 6-15 days after onset. IFN-gamma showed significant decreasing time trend (p = 0.005) and IL-8 levels showed increasing trend towards significance in DHF cases (interaction p = 0.059). There was a significant association of IL-8 levels with thrombocytopenia and both IFN-gamma and IL-8 were positively associated with alanine transaminase levels. CONCLUSIONS/SIGNIFICANCE: Rash, abdominal pain and conjunctival congestion could be prognostic symptoms for DHF. High levels of IL-6 and IL-8 were shown to associate with DHF. The time trend of IFN-gamma and IL-8 levels had greater significance than absolute values in DHF pathogenesis.


Assuntos
Citocinas/sangue , Dengue/sangue , Mediadores da Inflamação/sangue , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Humanos , Índia , Lactente , Masculino , Pessoa de Meia-Idade , Sensibilidade e Especificidade , Adulto Jovem
7.
Virol J ; 6: 10, 2009 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-19166574

RESUMO

BACKGROUND: Dengue virus (DENV), a mosquito borne flavivirus is an important pathogen causing more than 50 million infections every year around the world. Dengue diagnosis depends on serology, which is not useful in the early phase of the disease and virus isolation, which is laborious and time consuming. There is need for a rapid, sensitive and high throughput method for detection of DENV in the early stages of the disease. Several real-time PCR assays have been described for dengue viruses, but there is scope for improvement. The new generation TaqMan Minor Groove Binding (MGB) probe approach was used to develop an improved real time RT-PCR (qRT-PCR) for DENV in this study. RESULTS: The 3'UTR of thirteen Indian strains of DENV was sequenced and aligned with 41 representative sequences from GenBank. A region conserved in all four serotypes was used to target primers and probes for the qRT-PCR. A single MGB probe and a single primer pair for all the four serotypes of DENV were designed. The sensitivity of the two step qRT-PCR assay was10 copies of RNA molecules per reaction. The specificity and sensitivity of the assay was 100% when tested with a panel of 39 known positive and negative samples. Viral RNA could be detected and quantitated in infected mouse brain, cell cultures, mosquitoes and clinical samples. Viral RNA could be detected in patients even after seroconversion till 10 days post onset of infection. There was no signal with Japanese Encephalitis (JE), West Nile (WN), Chikungunya (CHK) viruses or with Leptospira, Plasmodium vivax, Plasmodium falciparum and Rickettsia positive clinical samples. CONCLUSION: We have developed a highly sensitive and specific qRT-PCR for detection and quantitation of dengue viruses. The assay will be a useful tool for differential diagnosis of dengue fever in a situation where a number of other clinically indistinguishable infectious diseases like malaria, Chikungunya, rickettsia and leptospira occur. The ability of the assay to detect DENV-2 in inoculated mosquitoes makes it a potential tool for detecting DENV in field-caught mosquitoes.


Assuntos
Vírus da Dengue/isolamento & purificação , Dengue/diagnóstico , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Regiões 3' não Traduzidas/genética , Aedes/virologia , Animais , Chlorocebus aethiops , Primers do DNA , Dengue/virologia , Vírus da Dengue/genética , Vírus da Dengue/fisiologia , Feminino , Humanos , Camundongos , RNA Viral/sangue , Sensibilidade e Especificidade , Células Vero , Carga Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA