Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
mSystems ; 9(4): e0029424, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38530054

RESUMO

Maternal secretor status is one of the determinants of human milk oligosaccharides (HMOs) composition, which, in turn, influences the gut microbiota composition of infants. To understand if this change in gut microbiota impacts immune cell composition, intestinal morphology, and gene expression, 21-day-old germ-free C57BL/6 mice were transplanted with fecal microbiota from infants whose mothers were either secretors (SMM) or non-secretors (NSM) or from infants consuming dairy-based formula (MFM). For each group, one set of mice was supplemented with HMOs. HMO supplementation did not significantly impact the microbiota diversity; however, SMM mice had a higher abundance of genus Bacteroides, Bifidobacterium, and Blautia, whereas, in the NSM group, there was a higher abundance of Akkermansia, Enterocloster, and Klebsiella. In MFM, gut microbiota was represented mainly by Parabacteroides, Ruminococcaceae_unclassified, and Clostrodium_sensu_stricto. In mesenteric lymph node, Foxp3+ T cells and innate lymphoid cells type 2 were increased in MFM mice supplemented with HMOs, while in the spleen, they were increased in SMM + HMOs mice. Similarly, serum immunoglobulin A was also elevated in MFM + HMOs group. Distinct global gene expression of the gut was observed in each microbiota group, which was enhanced with HMOs supplementation. Overall, our data show that distinct infant gut microbiota due to maternal secretor status or consumption of dairy-based formula and HMO supplementation impacts immune cell composition, antibody response, and intestinal gene expression in a mouse model. IMPORTANCE: Early life factors like neonatal diet modulate gut microbiota, which is important for the optimal gut and immune function. One such factor, human milk oligosaccharides (HMOs), the composition of which is determined by maternal secretor status, has a profound effect on infant gut microbiota. However, how the infant gut microbiota composition determined by maternal secretor status or consumption of infant formula devoid of HMOs impacts infant intestinal ammorphology, gene expression, and immune signature is not well explored. This study provides insights into the differential establishment of infant microbiota derived from infants fed by secretor or non-secretor mothers milk or those consuming infant formula and demonstrates that the secretor status of mothers promotes Bifidobacteria and Bacteroides sps. establishment. This study also shows that supplementation of pooled HMOs in mice changed immune cell composition in the spleen and mesenteric lymph nodes and immunoglobulins in circulation. Hence, this study highlights that maternal secretor status has a role in infant gut microbiota composition, and this, in turn, can impact host gut and immune system.


Assuntos
Imunidade Inata , Microbiota , Lactente , Feminino , Humanos , Animais , Camundongos , Camundongos Endogâmicos C57BL , Linfócitos/metabolismo , Leite Humano/química , Sistema Imunitário/metabolismo , Oligossacarídeos/análise , Bifidobacterium/genética
2.
Adv Nutr ; 15(3): 100185, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38311313

RESUMO

The human gut microbiota is composed of bacteria (microbiota or microbiome), fungi (mycobiome), viruses, and archaea, but most of the research is primarily focused on the bacterial component of this ecosystem. Besides bacteria, fungi have been shown to play a role in host health and physiologic functions. However, studies on mycobiota composition during infancy, the factors that might shape infant gut mycobiota, and implications to child health and development are limited. In this review, we discuss the factors likely shaping gut mycobiota, interkingdom interactions, and associations with child health outcomes and highlight the gaps in our current knowledge of this ecosystem.


Assuntos
Microbioma Gastrointestinal , Microbiota , Micobioma , Criança , Humanos , Saúde da Criança , Bactérias , Fungos/fisiologia
3.
Nutrients ; 15(2)2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36678256

RESUMO

A controlled-neonatal piglet trial was conducted to evaluate the impact of a plant-based infant formula containing buckwheat and almonds as the main source of protein compared to a commercially available dairy-based formula on the gut health parameters. Two day old piglets were fed either a plant-based or a dairy-based formula until day 21. Gut microbiome, cytokines, growth and metabolism related outcomes, and intestinal morphology were evaluated to determine the safety of the plant-based infant formula. This study reported that the plant-based formula-fed piglets had a similar intestinal microbiota composition relative to the dairy-based formula-fed group. However, differential abundance of specific microbiota species was detected within each diet group in the small and large intestinal regions and fecal samples. Lactobacillus delbrueckii, Lactobacillus crispatus, and Fusobacterium sp. had higher abundance in the small intestine of plant-based formula-fed piglets compared to the dairy-based group. Bacteroides nordii, Enterococcus sp., Lactobacillus crispatus, Prevotella sp., Ruminococcus lactaris, Bacteroides nordii, Eisenbergiella sp., Lactobacillus crispatus, Prevotella sp., and Akkermansia muciniphila had greater abundance in the large intestine of the plant based diet fed piglets relative to the dairy-based diet group. In the feces, Clostridiales, Bacteroides uniformis, Butyricimonasvirosa, Cloacibacillus porcorum, Clostridium clostridioforme, and Fusobacterium sp. were abundant in dairy-based group relative to the plant-based group. Lachnospiraceae, Clostridium scindens, Lactobacillus coleohominis, and Prevetolla sp. had greater abundance in the feces of the plant-based group in comparison to the dairy-based group. Gut morphology was similar between the plant and the dairy-based formula-fed piglets. Circulatory cytokines, magnesium, triiodothyronine (T3), thyroxine (T4), thyroid stimulating hormone (TSH), vitamin D, vitamin K, and IgE levels were similar among all piglets independent of dietary group. Overall, the present study demonstrated that a plant-based formula with buckwheat and almonds as the primary source of protein can support similar gut microbiota growth and health outcomes compared to a dairy-based infant formula.


Assuntos
Fagopyrum , Microbioma Gastrointestinal , Prunus dulcis , Animais , Animais Recém-Nascidos , Biomarcadores , Citocinas/metabolismo , Fórmulas Infantis , Intestino Delgado/metabolismo , Suínos
4.
Front Immunol ; 13: 907529, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35844612

RESUMO

Human milk harbors complex carbohydrates, including human milk oligosaccharides (HMOs), the third most abundant component after lactose and lipids. HMOs have been shown to impact intestinal microbiota, modulate the intestinal immune response, and prevent pathogenic bacterial binding by serving as decoy receptors. However, the direct effect of HMOs on intestinal function and immunity remains to be elucidated. To address this knowledge gap, 21-day-old germ-free mice (C57BI/6) were orally gavaged with 15 mg/day of pooled HMOs for 7 or 14 days and euthanized at day 28 or 35. A set of mice was maintained until day 50 to determine the persistent effects of HMOs. Control groups were maintained in the isolators for 28, 35, or 50 days of age. At the respective endpoints, intestinal tissues were subjected to histomorphometric and transcriptomic analyses, while the spleen and mesenteric lymph nodes (MLNs) were subjected to flow cytometric analysis. The small intestine (SI) crypt was reduced after HMO treatment relative to control at days 28 and 35, while the SI villus height and large intestine (LI) gland depth were decreased in the HMO-treated mice relative to the control at day 35. We report significant HMO-induced and location-specific gene expression changes in host intestinal tissues. HMO treatment significantly upregulated genes involved in extracellular matrix, protein ubiquitination, nuclear transport, and mononuclear cell differentiation. CD4+ T cells were increased in both MLNs and the spleen, while CD8+ T cells were increased in the spleen at day 50 in the HMO group in comparison to controls. In MLNs, plasma cells were increased in HMO group at days 28 and 35, while in the spleen, only at day 28 relative to controls. Macrophages/monocytes and neutrophils were lower in the spleen of the HMO group at days 28, 35, and 50, while in MLNs, only neutrophils were lower at day 50 in the 14-day HMO group. In addition, diphtheria toxoid and tetanus toxoid antibody-secreting cells were higher in HMO-supplemented group compared to controls. Our data suggest that HMOs have a direct effect on gastrointestinal tract metabolism and the immune system even in the absence of host microbiota.


Assuntos
Leite Humano , Oligossacarídeos , Animais , Expressão Gênica , Humanos , Imunidade , Intestinos/microbiologia , Camundongos , Oligossacarídeos/farmacologia
5.
J Exp Med ; 219(7)2022 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-35657352

RESUMO

Microbiota contribute to the induction of type 2 diabetes by high-fat/high-sugar (HFHS) diet, but which organs/pathways are impacted by microbiota remain unknown. Using multiorgan network and transkingdom analyses, we found that microbiota-dependent impairment of OXPHOS/mitochondria in white adipose tissue (WAT) plays a primary role in regulating systemic glucose metabolism. The follow-up analysis established that Mmp12+ macrophages link microbiota-dependent inflammation and OXPHOS damage in WAT. Moreover, the molecular signature of Mmp12+ macrophages in WAT was associated with insulin resistance in obese patients. Next, we tested the functional effects of MMP12 and found that Mmp12 genetic deficiency or MMP12 inhibition improved glucose metabolism in conventional, but not in germ-free mice. MMP12 treatment induced insulin resistance in adipocytes. TLR2-ligands present in Oscillibacter valericigenes bacteria, which are expanded by HFHS, induce Mmp12 in WAT macrophages in a MYD88-ATF3-dependent manner. Thus, HFHS induces Mmp12+ macrophages and MMP12, representing a microbiota-dependent bridge between inflammation and mitochondrial damage in WAT and causing insulin resistance.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Microbiota , Adipócitos/metabolismo , Animais , Diabetes Mellitus Tipo 2/metabolismo , Dieta Hiperlipídica/efeitos adversos , Glucose/metabolismo , Humanos , Inflamação/metabolismo , Insulina , Resistência à Insulina/fisiologia , Macrófagos/metabolismo , Metaloproteinase 12 da Matriz/metabolismo , Camundongos
6.
Mol Nutr Food Res ; 65(21): e2100389, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34496124

RESUMO

SCOPE: The polyphenol xanthohumol (XN) improves dysfunctional glucose and lipid metabolism in diet-induced obesity animal models. Because XN changes intestinal microbiota composition, the study hypothesizes that XN requires the microbiota to mediate its benefits. METHODS AND RESULTS: To test the hypothesis, the study feeds conventional and germ-free male Swiss Webster mice either a low-fat diet (LFD, 10% fat derived calories), a high-fat diet (HFD, 60% fat derived calories), or a high-fat diet supplemented with XN at 60 mg kg-1 body weight per day (HXN) for 10 weeks, and measure parameters of glucose and lipid metabolism. In conventional mice, the study discovers XN supplementation decreases plasma insulin concentrations and improves Homeostatic Model Assessment of Insulin Resistance (HOMA-IR). In germ-free mice, XN supplementation fails to improve these outcomes. Fecal sample 16S rRNA gene sequencing analysis suggests XN supplementation changes microbial composition and dramatically alters the predicted functional capacity of the intestinal microbiota. Furthermore, the intestinal microbiota metabolizes XN into bioactive compounds, including dihydroxanthohumol (DXN), an anti-obesogenic compound with improved bioavailability. CONCLUSION: XN requires the intestinal microbiota to mediate its benefits, which involves complex diet-host-microbiota interactions with changes in both microbial composition and functional capacity. The study results warrant future metagenomic studies which will provide insight into complex microbe-microbe interactions and diet-host-microbiota interactions.


Assuntos
Microbioma Gastrointestinal , Animais , Dieta Hiperlipídica/efeitos adversos , Flavonoides , Microbioma Gastrointestinal/genética , Glucose , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Propiofenonas , RNA Ribossômico 16S
7.
Nat Commun ; 12(1): 101, 2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33397942

RESUMO

Western diet (WD) is one of the major culprits of metabolic disease including type 2 diabetes (T2D) with gut microbiota playing an important role in modulating effects of the diet. Herein, we use a data-driven approach (Transkingdom Network analysis) to model host-microbiome interactions under WD to infer which members of microbiota contribute to the altered host metabolism. Interrogation of this network pointed to taxa with potential beneficial or harmful effects on host's metabolism. We then validate the functional role of the predicted bacteria in regulating metabolism and show that they act via different host pathways. Our gene expression and electron microscopy studies show that two species from Lactobacillus genus act upon mitochondria in the liver leading to the improvement of lipid metabolism. Metabolomics analyses revealed that reduced glutathione may mediate these effects. Our study identifies potential probiotic strains for T2D and provides important insights into mechanisms of their action.


Assuntos
Diabetes Mellitus Tipo 2/etiologia , Diabetes Mellitus Tipo 2/microbiologia , Dieta Ocidental , Lactobacillus/metabolismo , Mitocôndrias Hepáticas/metabolismo , Animais , Bilirrubina/sangue , Diabetes Mellitus Tipo 2/genética , Microbioma Gastrointestinal , Regulação da Expressão Gênica , Glucose/metabolismo , Glutationa/sangue , Glutationa/metabolismo , Humanos , Metabolismo dos Lipídeos , Masculino , Metabolômica , Camundongos Endogâmicos C57BL , Mitocôndrias Hepáticas/ultraestrutura , Reprodutibilidade dos Testes , Transcriptoma/genética
8.
EBioMedicine ; 51: 102590, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31901868

RESUMO

A substantial body of literature has provided evidence for the role of gut microbiota in metabolic diseases including type 2 diabetes. However, reports vary regarding the association of particular taxonomic groups with disease. In this systematic review, we focused on the potential role of different bacterial taxa affecting diabetes. We have summarized evidence from 42 human studies reporting microbial associations with disease, and have identified supporting preclinical studies or clinical trials using treatments with probiotics. Among the commonly reported findings, the genera of Bifidobacterium, Bacteroides, Faecalibacterium, Akkermansia and Roseburia were negatively associated with T2D, while the genera of Ruminococcus, Fusobacterium, and Blautia were positively associated with T2D. We also discussed potential molecular mechanisms of microbiota effects in the onset and progression of T2D.


Assuntos
Diabetes Mellitus Tipo 2/microbiologia , Diabetes Mellitus Tipo 2/fisiopatologia , Microbioma Gastrointestinal , Bactérias/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Humanos
9.
Sci Transl Med ; 10(467)2018 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-30429354

RESUMO

Aging in humans is associated with increased hyperglycemia and insulin resistance (collectively termed IR) and dysregulation of the immune system. However, the causative factors underlying their association remain unknown. Here, using "healthy" aged mice and macaques, we found that IR was induced by activated innate 4-1BBL+ B1a cells. These cells (also known as 4BL cells) accumulated in aging in response to changes in gut commensals and a decrease in beneficial metabolites such as butyrate. We found evidence suggesting that loss of the commensal bacterium Akkermansia muciniphila impaired intestinal integrity, causing leakage of bacterial products such as endotoxin, which activated CCR2+ monocytes when butyrate was decreased. Upon infiltration into the omentum, CCR2+ monocytes converted B1a cells into 4BL cells, which, in turn, induced IR by expressing 4-1BBL, presumably to trigger 4-1BB receptor signaling as in obesity-induced metabolic disorders. This pathway and IR were reversible, as supplementation with either A. muciniphila or the antibiotic enrofloxacin, which increased the abundance of A. muciniphila, restored normal insulin response in aged mice and macaques. In addition, treatment with butyrate or antibodies that depleted CCR2+ monocytes or 4BL cells had the same effect on IR. These results underscore the pathological function of B1a cells and suggest that the microbiome-monocyte-B cell axis could potentially be targeted to reverse age-associated IR.


Assuntos
Envelhecimento/imunologia , Bactérias/imunologia , Imunidade Inata , Resistência à Insulina , Animais , Bactérias/efeitos dos fármacos , Butiratos/farmacologia , Linhagem Celular , Disbiose/microbiologia , Enrofloxacina/farmacologia , Feminino , Microbioma Gastrointestinal/efeitos dos fármacos , Imunidade Inata/efeitos dos fármacos , Macaca , Camundongos Endogâmicos C57BL , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Omento/metabolismo , Receptores CCR2/metabolismo
10.
Clin Immunol ; 197: 139-153, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30240602

RESUMO

Common variable immunodeficiency (CVID), the most common symptomatic primary antibody deficiency, is accompanied in some patients by a duodenal inflammation and malabsorption syndrome known as CVID enteropathy (E-CVID).The goal of this study was to investigate the immunological abnormalities in CVID patients that lead to enteropathy as well as the contribution of intestinal microbiota to this process.We found that, in contrast to noE-CVID patients (without enteropathy), E-CVID patients have exceedingly low levels of IgA in duodenal tissues. In addition, using transkingdom network analysis of the duodenal microbiome, we identified Acinetobacter baumannii as a candidate pathobiont in E-CVID. Finally, we found that E-CVID patients exhibit a pronounced activation of immune genes and down-regulation of epithelial lipid metabolism genes. We conclude that in the virtual absence of mucosal IgA, pathobionts such as A. baumannii, may induce inflammation that re-directs intestinal molecular pathways from lipid metabolism to immune processes responsible for enteropathy.


Assuntos
Imunodeficiência de Variável Comum/imunologia , Duodenite/imunologia , Microbioma Gastrointestinal/imunologia , Imunidade nas Mucosas/imunologia , Imunoglobulina A/imunologia , Interferons/imunologia , Síndromes de Malabsorção/imunologia , Acinetobacter baumannii , Imunodeficiência de Variável Comum/complicações , Regulação para Baixo , Duodenite/etiologia , Duodenite/microbiologia , Feminino , Microbioma Gastrointestinal/genética , Expressão Gênica , Humanos , Inflamação , Metabolismo dos Lipídeos/genética , Síndromes de Malabsorção/etiologia , Síndromes de Malabsorção/microbiologia , Masculino , RNA Bacteriano/genética , RNA Ribossômico 16S/genética
11.
Front Microbiol ; 8: 2306, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29213261

RESUMO

The gut microbiome plays an important role in health and disease. Antibiotics are known to alter gut microbiota, yet their effects on glucose tolerance in lean, normoglycemic mice have not been widely investigated. In this study, we aimed to explore mechanisms by which treatment of lean mice with antibiotics (ampicillin, metronidazole, neomycin, vancomycin, or their cocktail) influences the microbiome and glucose metabolism. Specifically, we sought to: (i) study the effects on body weight, fasting glucose, glucose tolerance, and fasting insulin, (ii) examine the changes in expression of key genes of the bile acid and glucose metabolic pathways in the liver and ileum, (iii) identify the shifts in the cecal microbiota, and (iv) infer interactions between gene expression, microbiome, and the metabolic parameters. Treatment with individual or a cocktail of antibiotics reduced fasting glucose but did not affect body weight. Glucose tolerance changed upon treatment with cocktail, ampicillin, or vancomycin as indicated by reduced area under the curve of the glucose tolerance test. Antibiotic treatment changed gene expression in the ileum and liver, and shifted the alpha and beta diversities of gut microbiota. Network analyses revealed associations between Akkermansia muciniphila with fasting glucose and liver farsenoid X receptor (Fxr) in the top ranked host-microbial interactions, suggesting possible mechanisms by which this bacterium can mediate systemic changes in glucose metabolism. We observed Bacteroides uniformis to be positively and negatively correlated with hepatic Fxr and Glucose 6-phosphatase, respectively. Overall, our transkingdom network approach is a useful hypothesis generating strategy that offers insights into mechanisms by which antibiotics can regulate glucose tolerance in non-obese healthy animals. Experimental validation of our predicted microbe-phenotype interactions can help identify mechanisms by which antibiotics affect host phenotypes and gut microbiota.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA