Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Ecol Evol ; 14(5): e11334, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38694759

RESUMO

Animal trait data are scattered across several datasets, making it challenging to compile and compare trait information across different groups. For plants, the TRY database has been an unwavering success for those ecologists interested in addressing how plant traits influence a wide variety of processes and patterns, but the same is not true for most animal taxonomic groups. Here, we introduce ZooTraits, a Shiny app designed to help users explore and obtain animal trait data for research in ecology and evolution. ZooTraits was developed to tackle the challenge of finding in a single site information of multiple trait datasets and facilitating access to traits by providing an easy-to-use, open-source platform. This app combines datasets centralized in the Open Trait Network, raw data from the AnimalTraits database, and trait information for animals compiled by Gonçalves-Souza et al. (2023, Ecology and Evolution 13, e10016). Importantly, the ZooTraits app can be accessed freely and provides a user-friendly interface through three functionalities that will allow users to easily visualize, compare, download, and upload trait data across the animal tree of life-ExploreTrait, FeedTrait, and GetTrait. By using ExploreTrait and GetTrait, users can explore, compare, and extract 3954 trait records from 23,394 species centralized in the Open Traits Network, and trait data for ~2000 species from the AnimalTraits database. The app summarizes trait information for numerous taxonomic groups within the Animal Kingdom, encompassing data from diverse aquatic and terrestrial ecosystems and various geographic regions worldwide. Moreover, ZooTraits enables researchers to upload trait information, serving as a hub for a continually expanding global trait database. By promoting the centralization of trait datasets and offering a platform for data sharing, ZooTraits is facilitating advancements in trait-based ecological and evolutionary studies. We hope that other trait databases will evolve to mirror the approach we have outlined here.

2.
Ecol Evol ; 14(2): e11047, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38380066

RESUMO

Although climate-based hypotheses are widely used to explain large-scale diversity patterns, they fall short of explaining the spatial variation among taxonomic groups. Integrating food web and metabolic theories into macroecology is a promising step forward, as they allow including explicit taxon-specific traits that can potentially mediate the relationship between climate and diversity. Our investigation focuses on the role of body size and trophic structure in mediating the influence of contemporary climate and historical climate change on global tetrapods species richness. We used piecewise structural equation modeling to assess the direct effects of contemporary climate and climate instability of species richness and the indirect effects of climate on tetrapod richness mediated by community-wide species traits. We found that birds and mammals are less sensitive to the direct effect of contemporary climate than amphibians and squamates. Contemporary climate and climate instability favored the species richness of mammals and amphibians. However, for birds and squamates, this link is only associated with contemporary climate. Moreover, we showed that community-wide traits are correlated with species richness gradients. However, we highlight that this relationship is dependent upon the specific traits and taxonomic groups. Specifically, bird communities with smaller bodies and bottom-heavy structures support higher species richness. Squamates also tend to be more diverse in communities with prevalence of smaller bodies, while mammals are correlated with top-heavy structures. Moreover, we showed that higher contemporary climate and climate instability reduce the species richness of birds and mammals through community-wide traits and indirectly increase squamate species richness. We also showed that body size and trophic structure are driving a global asymmetric response of tetrapod diversity to climate effects, which highlights the limitation to use the "typical" climate-based hypotheses. Furthermore, by combining multiple theories, our research contributes to a more realistic and mechanistic understanding of diversity patterns across taxonomic groups.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA