Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
1.
mBio ; 11(5)2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-33024045

RESUMO

Only four species, Candida albicans, C. glabrata, C. parapsilosis, and C. tropicalis, together account for about 90% of all Candida bloodstream infections and are among the most common causes of invasive fungal infections of humans. However, virulence potential varies among these species, and the phylogenetic tree reveals that their pathogenicity may have emerged several times independently during evolution. We therefore tested these four species in a human whole-blood infection model to determine, via comprehensive dual-species RNA-sequencing analyses, which fungal infection strategies are conserved and which are recent evolutionary developments. The ex vivo infection progressed from initial immune cell interactions to nearly complete killing of all fungal cells. During the course of infection, we characterized important parameters of pathogen-host interactions, such as fungal survival, types of interacting immune cells, and cytokine release. On the transcriptional level, we obtained a predominantly uniform and species-independent human response governed by a strong upregulation of proinflammatory processes, which was downregulated at later time points after most of the fungal cells were killed. In stark contrast, we observed that the different fungal species pursued predominantly individual strategies and showed significantly different global transcriptome patterns. Among other findings, our functional analyses revealed that the fungal species relied on different metabolic pathways and virulence factors to survive the host-imposed stress. These data show that adaptation of Candida species as a response to the host is not a phylogenetic trait, but rather has likely evolved independently as a prerequisite to cause human infections.IMPORTANCE To ensure their survival, pathogens have to adapt immediately to new environments in their hosts, for example, during the transition from the gut to the bloodstream. Here, we investigated the basis of this adaptation in a group of fungal species which are among the most common causes of hospital-acquired infections, the Candida species. On the basis of a human whole-blood infection model, we studied which genes and processes are active over the course of an infection in both the host and four different Candida pathogens. Remarkably, we found that, while the human host response during the early phase of infection is predominantly uniform, the pathogens pursue largely individual strategies and each one regulates genes involved in largely disparate processes in the blood. Our results reveal that C. albicans, C. glabrata, C. parapsilosis, and C. tropicalis all have developed individual strategies for survival in the host. This indicates that their pathogenicity in humans has evolved several times independently and that genes which are central for survival in the host for one species may be irrelevant in another.


Assuntos
Adaptação Fisiológica , Sangue/microbiologia , Candida/patogenicidade , Proteínas Fúngicas/genética , Candida/classificação , Candida/imunologia , Candidíase/sangue , Citocinas/imunologia , Proteínas Fúngicas/imunologia , Perfilação da Expressão Gênica , Humanos , Redes e Vias Metabólicas , Viabilidade Microbiana , Filogenia , Virulência
2.
Arch Toxicol ; 94(1): 205-217, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31919559

RESUMO

Inflammation has been recognized as essential for restorative regeneration. Here, we analyzed the sequential processes during onset of liver injury and subsequent regeneration based on time-resolved transcriptional regulatory networks (TRNs) to understand the relationship between inflammation, mature organ function, and regeneration. Genome-wide expression and TRN analysis were performed time dependently in mouse liver after acute injury by CCl4 (2 h, 8 h, 1, 2, 4, 6, 8, 16 days), as well as lipopolysaccharide (LPS, 24 h) and compared to publicly available data after tunicamycin exposure (mouse, 6 h), hepatocellular carcinoma (HCC, mouse), and human chronic liver disease (non-alcoholic fatty liver, HBV infection and HCC). Spatiotemporal investigation differentiated lobular zones for signaling and transcription factor expression. Acute CCl4 intoxication induced expression of gene clusters enriched for inflammation and stress signaling that peaked between 2 and 24 h, accompanied by a decrease of mature liver functions, particularly metabolic genes. Metabolism decreased not only in pericentral hepatocytes that underwent CCl4-induced necrosis, but extended to the surviving periportal hepatocytes. Proliferation and tissue restorative TRNs occurred only later reaching a maximum at 48 h. The same upstream regulators (e.g. inhibited RXR function) were implicated in increased inflammation and suppressed metabolism. The concomitant inflammation/metabolism TRN occurred similarly after acute LPS and tunicamycin challenges, in chronic mouse models and also in human liver diseases. Downregulation of metabolic genes occurs concomitantly to induce inflammation-associated genes as an early response and appears to be initiated by similar upstream regulators in acute and chronic liver diseases in humans and mice. In the acute setting, proliferation and restorative regeneration associated TRNs peak only later when metabolism is already suppressed.


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas/genética , Redes Reguladoras de Genes , Hepatite Crônica/genética , Animais , Tetracloreto de Carbono/toxicidade , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Hepatite B/genética , Hepatite B/metabolismo , Hepatite Crônica/fisiopatologia , Humanos , Cirrose Hepática/genética , Cirrose Hepática/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética
3.
Cells ; 8(10)2019 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-31635436

RESUMO

Given the important role of angiogenesis in liver pathology, the current study investigated the role of Runt-related transcription factor 1 (RUNX1), a regulator of developmental angiogenesis, in the pathogenesis of non-alcoholic steatohepatitis (NASH). Quantitative RT-PCRs and a transcription factor analysis of angiogenesis-associated differentially expressed genes in liver tissues of healthy controls, patients with steatosis and NASH, indicated a potential role of RUNX1 in NASH. The gene expression of RUNX1 was correlated with histopathological attributes of patients. The protein expression of RUNX1 in liver was studied by immunohistochemistry. To explore the underlying mechanisms, in vitro studies using RUNX1 siRNA and overexpression plasmids were performed in endothelial cells (ECs). RUNX1 expression was significantly correlated with inflammation, fibrosis and NASH activity score in NASH patients. Its expression was conspicuous in liver non-parenchymal cells. In vitro, factors from steatotic hepatocytes and/or VEGF or TGF- significantly induced the expression of RUNX1 in ECs. RUNX1 regulated the expression of angiogenic and adhesion molecules in ECs, including CCL2, PECAM1 and VCAM1, which was shown by silencing or over-expression of RUNX1. Furthermore, RUNX1 increased the angiogenic activity of ECs. This study reports that steatosis-induced RUNX1 augmented the expression of adhesion and angiogenic molecules and properties in ECs and may be involved in enhancing inflammation and disease severity in NASH.


Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Fígado/metabolismo , Fígado/patologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Animais , Carcinoma Hepatocelular/metabolismo , Células Cultivadas , Modelos Animais de Doenças , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Citometria de Fluxo , Células Endoteliais da Veia Umbilical Humana , Humanos , Técnicas In Vitro , Neoplasias Hepáticas/metabolismo , Camundongos , Ácido Palmítico/farmacologia
4.
Nat Commun ; 10(1): 2459, 2019 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-31150008

RESUMO

The original version of this Article contained an error in the spelling of the author Jule Müller, which was incorrectly given as Julia Müller. Additionally, in Fig. 4a, the blue-red colour scale for fold change in ageing/disease regulation included a blue stripe in place of a red stripe at the right-hand end of the scale. These errors have been corrected in both the PDF and HTML versions of the Article.

5.
J Hepatol ; 70(6): 1192-1202, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30711403

RESUMO

BACKGROUND & AIMS: The mammalian circadian clock controls various aspects of liver metabolism and integrates nutritional signals. Recently, we described Hedgehog (Hh) signaling as a novel regulator of liver lipid metabolism. Herein, we investigated crosstalk between hepatic Hh signaling and circadian rhythm. METHODS: Diurnal rhythms of Hh signaling were investigated in liver and hepatocytes from mice with ablation of Smoothened (SAC-KO) and crossbreeds with PER2::LUC reporter mice. By using genome-wide screening, qPCR, immunostaining, ELISA and RNAi experiments in vitro we identified relevant transcriptional regulatory steps. Shotgun lipidomics and metabolic cages were used for analysis of metabolic alterations and behavior. RESULTS: Hh signaling showed diurnal oscillations in liver and hepatocytes in vitro. Correspondingly, the level of Indian Hh, oscillated in serum. Depletion of the clock gene Bmal1 in hepatocytes resulted in significant alterations in the expression of Hh genes. Conversely, SAC-KO mice showed altered expression of clock genes, confirmed by RNAi against Gli1 and Gli3. Genome-wide screening revealed that SAC-KO hepatocytes showed time-dependent alterations in various genes, particularly those associated with lipid metabolism. The clock/hedgehog module further plays a role in rhythmicity of steatosis, and in the response of the liver to a high-fat diet or to differently timed starvation. CONCLUSIONS: For the first time, Hh signaling in hepatocytes was found to be time-of-day dependent and to feed back on the circadian clock. Our findings suggest an integrative role of Hh signaling, mediated mainly by GLI factors, in maintaining homeostasis of hepatic lipid metabolism by balancing the circadian clock. LAY SUMMARY: The results of our investigation show for the first time that the Hh signaling in hepatocytes is time-of-day dependent, leading to differences not only in transcript levels but also in the amount of Hh ligands in peripheral blood. Conversely, Hh signaling is able to feed back to the circadian clock.


Assuntos
Relógios Circadianos/fisiologia , Fígado Gorduroso/etiologia , Proteínas Hedgehog/fisiologia , Animais , Metabolismo dos Lipídeos , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/fisiologia , Transdução de Sinais/fisiologia , Receptor Smoothened/fisiologia , Proteína GLI1 em Dedos de Zinco/fisiologia , Proteína Gli3 com Dedos de Zinco/fisiologia
6.
Artigo em Inglês | MEDLINE | ID: mdl-30478162

RESUMO

The opportunistic pathogen Candida glabrata shows a concerning increase in drug resistance. Here, we present the analysis of two serial bloodstream isolates, obtained 12 days apart. Both isolates show pan-azole resistance and echinocandin resistance was acquired during the sampling interval. Genome sequencing identified nine nonsynonymous SNVs between the strains, including a S663P substitution in FKS2 and previously undescribed SNVs in MDE1 and FPR1, offering insight into how C. glabrata acquires drug resistance and adapts to a human host.


Assuntos
Candida glabrata/efeitos dos fármacos , Candida glabrata/genética , Equinocandinas/farmacologia , Genômica/métodos , Antifúngicos/farmacologia , Candidíase/microbiologia , Proteínas Fúngicas/genética , Humanos , Testes de Sensibilidade Microbiana
7.
Front Microbiol ; 9: 217, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29497409

RESUMO

Verticillium dahliae is a soil-borne vascular pathogen that causes severe wilt symptoms in a wide range of plants. Co-culture of the fungus with Arabidopsis roots for 24 h induces many changes in the gene expression profiles of both partners, even before defense-related phytohormone levels are induced in the plant. Both partners reprogram sugar and amino acid metabolism, activate genes for signal perception and transduction, and induce defense- and stress-responsive genes. Furthermore, analysis of Arabidopsis expression profiles suggests a redirection from growth to defense. After 3 weeks, severe disease symptoms can be detected for wild-type plants while mutants impaired in jasmonate synthesis and perception perform much better. Thus, plant jasmonates have an important influence on the interaction, which is already visible at the mRNA level before hormone changes occur. The plant and fungal genes that rapidly respond to the presence of the partner might be crucial for early recognition steps and the future development of the interaction. Thus they are potential targets for the control of V. dahliae-induced wilt diseases.

8.
Mol Cell Proteomics ; 17(6): 1084-1096, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29507050

RESUMO

Invasive infections by the human pathogenic fungus Aspergillus fumigatus start with the outgrowth of asexual, airborne spores (conidia) into the lung tissue of immunocompromised patients. The resident alveolar macrophages phagocytose conidia, which end up in phagolysosomes. However, A. fumigatus conidia resist phagocytic degradation to a certain degree. This is mainly attributable to the pigment 1,8-dihydroxynaphthalene (DHN) melanin located in the cell wall of conidia, which manipulates the phagolysosomal maturation and prevents their intracellular killing. To get insight in the underlying molecular mechanisms, we comparatively analyzed proteins of mouse macrophage phagolysosomes containing melanized wild-type (wt) or nonmelanized pksP mutant conidia. For this purpose, a protocol to isolate conidia-containing phagolysosomes was established and a reference protein map of phagolysosomes was generated. We identified 637 host and 22 A. fumigatus proteins that were differentially abundant in the phagolysosome. 472 of the host proteins were overrepresented in the pksP mutant and 165 in the wt conidia-containing phagolysosome. Eight of the fungal proteins were produced only in pksP mutant and 14 proteins in wt conidia-containing phagolysosomes. Bioinformatical analysis compiled a regulatory module, which indicates host processes affected by the fungus. These processes include vATPase-driven phagolysosomal acidification, Rab5 and Vamp8-dependent endocytic trafficking, signaling pathways, as well as recruitment of the Lamp1 phagolysosomal maturation marker and the lysosomal cysteine protease cathepsin Z. Western blotting and immunofluorescence analyses confirmed the proteome data and moreover showed differential abundance of the major metabolic regulator mTOR. Taken together, with the help of a protocol optimized to isolate A. fumigatus conidia-containing phagolysosomes and a potent bioinformatics algorithm, we were able to confirm A. fumigatus conidia-dependent modification of phagolysosomal processes that have been described before and beyond that, identify pathways that have not been implicated in A. fumigatus evasion strategy, yet.Mass spectrometry proteomics data are available via ProteomeXchange with identifiers PXD005724 and PXD006134.


Assuntos
Aspergillus fumigatus/fisiologia , Proteínas Fúngicas/metabolismo , Evasão da Resposta Imune , Fagossomos/metabolismo , Esporos Fúngicos/metabolismo , Animais , Camundongos , Proteômica , Células RAW 264.7
9.
Cell Metab ; 27(4): 914-925.e5, 2018 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-29551589

RESUMO

Whether and how regulation of genes and pathways contributes to physiological aging is topic of intense scientific debate. By performing an RNA expression-based screen for genes downregulated during aging of three different species, we identified glycine-C-acetyltransferase (GCAT, EC 2.3.1.29). Impairing gcat expression promotes the lifespan of C. elegans by interfering with threonine catabolism to promote methylglyoxal (MGO; CAS 78-98-8) formation in an amine oxidase-dependent manner. MGO is a reactive dicarbonyl inducing diabetic complications in mammals by causing oxidative stress and damaging cellular components, including proteins. While high concentrations of MGO consistently exert toxicity in nematodes, we unexpectedly find that low-dose MGO promotes lifespan, resembling key mediators of gcat impairment. These were executed by the ubiquitin-proteasome system, namely PBS-3 and RPN-6.1 subunits, regulated by the stress-responsive transcriptional regulators SKN-1/NRF2 and HSF-1. Taken together, GCAT acts as an evolutionary conserved aging-related gene by orchestrating an unexpected nonlinear impact of proteotoxic MGO on longevity.


Assuntos
Acetiltransferases/fisiologia , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Aldeído Pirúvico/metabolismo , Treonina/metabolismo , Acetiltransferases/genética , Animais , Proteínas de Ligação a DNA/metabolismo , Longevidade/fisiologia , Estresse Oxidativo , Transdução de Sinais , Fatores de Transcrição/metabolismo
10.
Nat Commun ; 9(1): 327, 2018 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-29382830

RESUMO

Disease epidemiology during ageing shows a transition from cancer to degenerative chronic disorders as dominant contributors to mortality in the old. Nevertheless, it has remained unclear to what extent molecular signatures of ageing reflect this phenomenon. Here we report on the identification of a conserved transcriptomic signature of ageing based on gene expression data from four vertebrate species across four tissues. We find that ageing-associated transcriptomic changes follow trajectories similar to the transcriptional alterations observed in degenerative ageing diseases but are in opposite direction to the transcriptomic alterations observed in cancer. We confirm the existence of a similar antagonism on the genomic level, where a majority of shared risk alleles which increase the risk of cancer decrease the risk of chronic degenerative disorders and vice versa. These results reveal a fundamental trade-off between cancer and degenerative ageing diseases that sheds light on the pronounced shift in their epidemiology during ageing.


Assuntos
Envelhecimento/genética , Doenças Cardiovasculares/genética , Diabetes Mellitus/genética , Neoplasias/genética , Doenças Neurodegenerativas/genética , Transcriptoma , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Envelhecimento/metabolismo , Envelhecimento/patologia , Animais , Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Doenças Cardiovasculares/sangue , Doenças Cardiovasculares/patologia , Criança , Pré-Escolar , Doença Crônica , Diabetes Mellitus/sangue , Diabetes Mellitus/patologia , Fundulidae/genética , Fundulidae/crescimento & desenvolvimento , Fundulidae/metabolismo , Ontologia Genética , Genoma Humano , Humanos , Lactente , Fígado/crescimento & desenvolvimento , Fígado/metabolismo , Camundongos , Pessoa de Meia-Idade , Anotação de Sequência Molecular , Neoplasias/metabolismo , Neoplasias/patologia , Doenças Neurodegenerativas/sangue , Doenças Neurodegenerativas/patologia , Pele/crescimento & desenvolvimento , Pele/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/crescimento & desenvolvimento , Peixe-Zebra/metabolismo
11.
Sci Rep ; 8(1): 433, 2018 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-29323246

RESUMO

The identification of disease-associated modules based on protein-protein interaction networks (PPINs) and gene expression data has provided new insights into the mechanistic nature of diverse diseases. However, their identification is hampered by the detection of protein communities within large-scale, whole-genome PPINs. A presented successful strategy detects a PPIN's community structure based on the maximal clique enumeration problem (MCE), which is a non-deterministic polynomial time-hard problem. This renders the approach computationally challenging for large PPINs implying the need for new strategies. We present ModuleDiscoverer, a novel approach for the identification of regulatory modules from PPINs and gene expression data. Following the MCE-based approach, ModuleDiscoverer uses a randomization heuristic-based approximation of the community structure. Given a PPIN of Rattus norvegicus and public gene expression data, we identify the regulatory module underlying a rodent model of non-alcoholic steatohepatitis (NASH), a severe form of non-alcoholic fatty liver disease (NAFLD). The module is validated using single-nucleotide polymorphism (SNP) data from independent genome-wide association studies and gene enrichment tests. Based on gene enrichment tests, we find that ModuleDiscoverer performs comparably to three existing module-detecting algorithms. However, only our NASH-module is significantly enriched with genes linked to NAFLD-associated SNPs. ModuleDiscoverer is available at http://www.hki-jena.de/index.php/0/2/490 (Others/ModuleDiscoverer).


Assuntos
Biologia Computacional/métodos , Redes Reguladoras de Genes , Hepatopatia Gordurosa não Alcoólica/metabolismo , Polimorfismo de Nucleotídeo Único , Mapas de Interação de Proteínas , Algoritmos , Animais , Modelos Animais de Doenças , Predisposição Genética para Doença , Humanos , Hepatopatia Gordurosa não Alcoólica/genética , Ratos
12.
Mucosal Immunol ; 11(3): 627-642, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29297499

RESUMO

Protein secretion upon TLR, TNFR1, and IFNGR ligation in the human airways is considered to be central for the orchestration of pulmonary inflammatory and immune responses. In this study, we compared the gene expression and protein secretion profiles in response to specific stimulation of all expressed TLRs and in further comparison to TNFR1 and IFNGR in primary human airway epithelial cells. In addition to 22 cytokines, we observed the receptor-induced regulation of 571 genes and 1,012 secreted proteins. Further analysis revealed high similarities between the transcriptional TLR sensor and TNFR1 effector responses. However, secretome to transcriptome comparisons showed a broad receptor stimulation-dependent release of proteins that were not transcriptionally regulated. Many of these proteins are annotated to exosomes with associations to, for example, antigen presentation and wound-healing, or were identified as secretable proteins related to immune responses. Thus, we show a hitherto unrecognized scope of receptor-induced responses in airway epithelium, involving several additional functions for the immune response, exosomal communication and tissue homeostasis.


Assuntos
Exossomos/metabolismo , Mucosa Respiratória/fisiologia , Sistema Respiratório/citologia , Apresentação de Antígeno , Secreções Corporais/imunologia , Células Cultivadas , Citocinas/genética , Citocinas/metabolismo , Perfilação da Expressão Gênica , Homeostase , Humanos , Imunidade , Cultura Primária de Células , Receptores de Interferon/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Via Secretória , Receptores Toll-Like/metabolismo , Transcriptoma , Cicatrização , Receptor de Interferon gama
13.
Metabolomics ; 14(4): 41, 2018 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-30830340

RESUMO

INTRODUCTION: Stable isotopic labeling experiments are powerful tools to study metabolic pathways, to follow tracers and fluxes in biotic and abiotic transformations and to elucidate molecules involved in metal complexing. OBJECTIVE: To introduce a software tool for the identification of isotopologues from mass spectrometry data. METHODS: DeltaMS relies on XCMS peak detection and X13CMS isotopologue grouping and then analyses data for specific isotope ratios and the relative error of these ratios. It provides pipelines for recognition of isotope patterns in three experiment types commonly used in isotopic labeling studies: (1) search for isotope signatures with a specific mass shift and intensity ratio in one sample set, (2) analyze two sample sets for a specific mass shift and, optionally, the isotope ratio, whereby one sample set is isotope-labeled, and one is not, (3) analyze isotope-guided perturbation experiments with a setup described in X13CMS. RESULTS: To illustrate the versatility of DeltaMS, we analyze data sets from case-studies that commonly pose challenges in evaluation of natural isotopes or isotopic signatures in labeling experiment. In these examples, the untargeted detection of sulfur, bromine and artificial metal isotopic patterns is enabled by the automated search for specific isotopes or isotope signatures. CONCLUSION: DeltaMS provides a platform for the identification of (pre-defined) isotopologues in MS data from single samples or comparative metabolomics data sets.


Assuntos
Marcação por Isótopo , Laccaria/química , Leucemia Mielogênica Crônica BCR-ABL Positiva/diagnóstico , Metabolômica , Cromatografia Gasosa , Cromatografia Líquida , Humanos , Células K562 , Laccaria/metabolismo , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Espectrometria de Massas
14.
J R Soc Interface ; 14(133)2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28835543

RESUMO

Intrinsic of non-alcoholic fatty liver diseases is an aberrant accumulation of triglycerides (steatosis), which occurs inhomogeneously within lobules. To improve our understanding of the mechanisms involved in this zonation patterning, we developed a mathematical multicompartment model of hepatic fatty acid metabolism accompanied by blood flow simulations. A model analysis determines the influence of the uptake process of fatty acids, the porto-central gradient of plasma fatty acid concentration, and the oxygen supply via blood on the zonation of triglyceride accumulation. From this theoretical perspective, the plasma oxygen gradient, but not the fatty acid gradient, leads the way to a zonated triglyceride accumulation by its decisive role in oxidative processes. In addition, the uptake mechanism of fatty acids seems to be fundamental for a pericentral dominance of steatosis. However, the mechanism of cellular fatty acid uptake from the blood is still under debate. Our theoretical approach supports the transporter-mediated uptake mechanism and reveals that the maximal velocity of fatty acid uptake affects the switching between a periportal and a pericentral triglyceride accumulation. Further research on hepatic fatty acid uptake is needed to push forward our understanding of aberrant triglyceride accumulation in diet-induced steatosis.


Assuntos
Ácidos Graxos/metabolismo , Fígado/metabolismo , Modelos Biológicos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Triglicerídeos/metabolismo , Animais , Humanos , Fígado/patologia , Hepatopatia Gordurosa não Alcoólica/patologia
15.
Sci Rep ; 7(1): 838, 2017 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-28404994

RESUMO

Exposure of human monocytes to lipopolysaccharide (LPS) induces a temporary insensitivity to subsequent LPS challenges, a cellular state called endotoxin tolerance. In this study, we investigated the LPS-induced global glycoprotein expression changes of tolerant human monocytes and THP-1 cells to identify markers and glycoprotein targets capable to modulate the immunosuppressive state. Using hydrazide chemistry and LC-MS/MS analysis, we analyzed glycoprotein expression changes during a 48 h LPS time course. The cellular snapshots at different time points identified 1491 glycoproteins expressed by monocytes and THP-1 cells. Label-free quantitative analysis revealed transient or long-lasting LPS-induced expression changes of secreted or membrane-anchored glycoproteins derived from intracellular membrane coated organelles or from the plasma membrane. Monocytes and THP-1 cells demonstrated marked differences in glycoproteins differentially expressed in the tolerant state. Among the shared differentially expressed glycoproteins G protein-coupled receptor 84 (GPR84) was identified as being capable of modulating pro-inflammatory TNFα mRNA expression in the tolerant cell state when activated with its ligand Decanoic acid.


Assuntos
Glicoproteínas/genética , Lipopolissacarídeos/toxicidade , Monócitos/imunologia , Receptores de Superfície Celular/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Linhagem Celular Tumoral , Células Cultivadas , Ácidos Decanoicos/farmacologia , Glicoproteínas/metabolismo , Humanos , Monócitos/efeitos dos fármacos , Proteoma , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores de Superfície Celular/genética , Receptores Acoplados a Proteínas G , Fator de Necrose Tumoral alfa/genética
16.
Front Microbiol ; 8: 270, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28280489

RESUMO

Within the last two decades, the incidence of invasive fungal infections has been significantly increased. They are characterized by high mortality rates and are often caused by Candida albicans and Aspergillus fumigatus. The increasing number of infections underlines the necessity for additional anti-fungal therapies, which require extended knowledge of gene regulations during fungal infection. MicroRNAs are regulators of important cellular processes, including the immune response. By analyzing their regulation and impact on target genes, novel therapeutic and diagnostic approaches may be developed. Here, we examine the role of microRNAs in human dendritic cells during fungal infection. Dendritic cells represent the bridge between the innate and the adaptive immune systems. Therefore, analysis of gene regulation of dendritic cells is of particular significance. By applying next-generation sequencing of small RNAs, we quantify microRNA expression in monocyte-derived dendritic cells after 6 and 12 h of infection with C. albicans and A. fumigatus as well as treatment with lipopolysaccharides (LPS). We identified 26 microRNAs that are differentially regulated after infection by the fungi or LPS. Three and five of them are specific for fungal infections after 6 and 12 h, respectively. We further validated interactions of miR-132-5p and miR-212-5p with immunological relevant target genes, such as FKBP1B, KLF4, and SPN, on both RNA and protein level. Our results indicate that these microRNAs fine-tune the expression of immune-related target genes during fungal infection. Beyond that, we identified previously undiscovered microRNAs. We validated three novel microRNAs via qRT-PCR. A comparison with known microRNAs revealed possible relations with the miR-378 family and miR-1260a/b for two of them, while the third one features a unique sequence with no resemblance to known microRNAs. In summary, this study analyzes the effect of known microRNAs in dendritic cells during fungal infections and proposes novel microRNAs that could be experimentally verified.

17.
Alcohol Clin Exp Res ; 41(5): 883-894, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28226195

RESUMO

BACKGROUND: The liver is the major site for alcohol metabolism in the body and therefore the primary target organ for ethanol (EtOH)-induced toxicity. In this study, we investigated the in vitro response of human liver cells to different EtOH concentrations in a perfused bioartificial liver device that mimics the complex architecture of the natural organ. METHODS: Primary human liver cells were cultured in the bioartificial liver device and treated for 24 hours with medium containing 150 mM (low), 300 mM (medium), or 600 mM (high) EtOH, while a control culture was kept untreated. Gene expression patterns for each EtOH concentration were monitored using Affymetrix Human Gene 1.0 ST Gene chips. Scaled expression profiles of differentially expressed genes (DEGs) were clustered using Fuzzy c-means algorithm. In addition, functional classification methods, KEGG pathway mapping and also a machine learning approach (Random Forest) were utilized. RESULTS: A number of 966 (150 mM EtOH), 1,334 (300 mM EtOH), or 4,132 (600 mM EtOH) genes were found to be differentially expressed. Dose-response relationships of the identified clusters of co-expressed genes showed a monotonic, threshold, or nonmonotonic (hormetic) behavior. Functional classification of DEGs revealed that low or medium EtOH concentrations operate adaptation processes, while alterations observed for the high EtOH concentration reflect the response to cellular damage. The genes displaying a hormetic response were functionally characterized by overrepresented "cellular ketone metabolism" and "carboxylic acid metabolism." Altered expression of the genes BAHD1 and H3F3B was identified as sufficient to classify the samples according to the applied EtOH doses. CONCLUSIONS: Different pathways of metabolic and epigenetic regulation are affected by EtOH exposition and partly undergo hormetic regulation in the bioartificial liver device. Gene expression changes observed at high EtOH concentrations reflect in some aspects the situation of alcoholic hepatitis in humans.


Assuntos
Etanol/toxicidade , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Humanos , Estresse Oxidativo/fisiologia , Transcrição Gênica/fisiologia
18.
ACS Chem Biol ; 12(5): 1227-1234, 2017 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-28233494

RESUMO

Filamentous fungi produce a wide range of natural products that are commonly used in various industrial contexts (e.g., pharmaceuticals and insecticides). Meroterpenoids are natural products of interest because of their various biological activities. Among the meroterpenoids, there is a group of insecticidal compounds known as the austinoids. These compounds have also been studied because of their intriguing spiro-lactone ring formation along with various modifications. Here, we present an extension of the original austinol/dehydroaustinol biosynthesis pathway from Aspergillus nidulans in the recently identified filamentous fungus Aspergillus calidoustus. Besides the discovery and elucidation of further derivatives, genome mining led to the discovery of new putative biosynthetic genes. The genes involved in the biosynthesis of later austinoid products were characterized, and among them was a second polyketide synthase gene in the A. calidoustus cluster that was unusual because it was a noninterative polyketide synthase producing a diketide. This diketide product was then loaded onto the austinoid backbone, resulting in a new insecticidal derivative, calidodehydroaustin.


Assuntos
Aspergillus/metabolismo , Vias Biossintéticas , Terpenos/metabolismo , Aspergillus/enzimologia , Aspergillus nidulans/enzimologia , Aspergillus nidulans/metabolismo , Dimerização , Genes Fúngicos , Inseticidas , Redes e Vias Metabólicas , Policetídeo Sintases/metabolismo , Policetídeos/metabolismo
19.
Brief Funct Genomics ; 16(2): 57-69, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-26857943

RESUMO

Recent and rapidly evolving progress on high-throughput measurement techniques and computational performance has led to the emergence of new disciplines, such as systems medicine and translational systems biology. At the core of these disciplines lies the desire to produce multiscale models: mathematical models that integrate multiple scales of biological organization, ranging from molecular, cellular and tissue models to organ, whole-organism and population scale models. Using such models, hypotheses can systematically be tested. In this review, we present state-of-the-art multiscale modelling of bacterial and fungal infections, considering both the pathogen and host as well as their interaction. Multiscale modelling of the interactions of bacteria, especially Mycobacterium tuberculosis, with the human host is quite advanced. In contrast, models for fungal infections are still in their infancy, in particular regarding infections with the most important human pathogenic fungi, Candida albicans and Aspergillus fumigatus. We reflect on the current availability of computational approaches for multiscale modelling of host-pathogen interactions and point out current challenges. Finally, we provide an outlook for future requirements of multiscale modelling.


Assuntos
Bactérias/patogenicidade , Fungos/fisiologia , Interações Hospedeiro-Patógeno , Modelos Biológicos , Modelos Teóricos , Biologia de Sistemas , Animais , Humanos
20.
Front Microbiol ; 7: 1167, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27536272

RESUMO

Severe influenza associated with strong symptoms and lung inflammation can be caused by intra-host evolution of quasispecies with aspartic acid or glycine in hemagglutinin position 222 (HA-222D/G; H1 numbering). To gain insights into the dynamics of host response to this coevolution and to identify key mechanisms contributing to copathogenesis, the lung transcriptional response of BALB/c mice infected with an A(H1N1)pdm09 isolate consisting HA-222D/G quasispecies was analyzed from days 1 to 12 post infection (p.i). At day 2 p.i. 968 differentially expressed genes (DEGs) were detected. The DEG number declined to 359 at day 4 and reached 1001 at day 7 p.i. prior to recovery. Interestingly, a biphasic expression profile was shown for the majority of these genes. Cytokine assays confirmed these results on protein level exemplarily for two key inflammatory cytokines, interferon gamma and interleukin 6. Using a reverse engineering strategy, a regulatory network was inferred to hypothetically explain the biphasic pattern for selected DEGs. Known regulatory interactions were extracted by Pathway Studio 9.0 and integrated during network inference. The hypothetic gene regulatory network revealed a positive feedback loop of Ifng, Stat1, and Tlr3 gene signaling that was triggered by the HA-G222 variant and correlated with a clinical symptom score indicating disease severity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA