Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Hum Neurosci ; 16: 958703, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35992943

RESUMO

Directional deep brain stimulation (DBS) contacts provide greater spatial flexibility for therapy than traditional ring-shaped electrodes, but little is known about longitudinal changes of impedance and orientation. We measured monopolar and bipolar impedance of DBS contacts in 31 patients who underwent unilateral subthalamic nucleus deep brain stimulation as part of a randomized study (SUNDIAL, NCT03353688). At different follow-up visits, patients were assigned new stimulation configurations and impedance was measured. Additionally, we measured the orientation of the directional lead during surgery, immediately after surgery, and 1 year later. Here we contrast impedances in directional versus ring contacts with respect to local anatomy, active stimulation contact(s), and over time. Directional contacts display larger impedances than ring contacts. Impedances generally increase slightly over the first year of therapy, save for a transient decrease immediately post-surgery under general anesthesia during pulse generator placement. Local impedances decrease at active stimulation sites, and contacts in closest proximity to internal capsule display higher impedances than other anatomic sites. DBS leads rotate slightly in the immediate postoperative period (typically less than the angle of a single contact) but otherwise remain stable over the following year. These data provide useful information for setting clinical stimulation parameters over time.

2.
Mov Disord ; 37(8): 1683-1692, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35702056

RESUMO

BACKGROUND: Dystonia is an understudied motor feature of Parkinson's disease (PD). Although considerable efforts have focused on brain oscillations related to the cardinal symptoms of PD, whether dystonia is associated with specific electrophysiological features is unclear. OBJECTIVE: The objective of this study was to investigate subcortical and cortical field potentials at rest and during contralateral hand and foot movements in patients with PD with and without dystonia. METHODS: We examined the prevalence and distribution of dystonia in patients with PD undergoing deep brain stimulation surgery.  During surgery, we recorded intracranial electrophysiology from the motor cortex and directional electrodes in the subthalamic nucleus (STN) both at rest and during self-paced repetitive contralateral hand and foot movements. Wavelet transforms and mixed models characterized changes in spectral content in patients with and without dystonia. RESULTS: Dystonia was highly prevalent at enrollment (61%) and occurred most commonly in the foot. Regardless of dystonia status, cortical recordings display beta (13-30 Hz) desynchronization during movements versus rest, while STN signals show increased power in low frequencies (6.0 ± 3.3 and 4.2 ± 2.9 Hz peak frequencies for hand and foot movements, respectively). Patients with PD with dystonia during deep brain stimulation surgery displayed greater M1 beta power at rest and STN low-frequency power during movements versus those without dystonia. CONCLUSIONS: Spectral power in motor cortex and STN field potentials differs markedly during repetitive limb movements, with cortical beta desynchronization and subcortical low-frequency synchronization, especially in patients with PD with dystonia. Greater knowledge on field potential dynamics in human motor circuits can inform dystonia pathophysiology in PD and guide novel approaches to therapy. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Estimulação Encefálica Profunda , Distonia , Distúrbios Distônicos , Doença de Parkinson , Núcleo Subtalâmico , Distonia/etiologia , Humanos , Núcleo Subtalâmico/fisiologia
3.
Mov Disord ; 27(11): 1404-12, 2012 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-22926754

RESUMO

Deep brain stimulation (DBS) relieves disabling symptoms of neurologic and psychiatric diseases when medical treatments fail, yet its therapeutic mechanism is unknown. We hypothesized that ventral intermediate (VIM) nucleus stimulation for essential tremor activates the cortex at short latencies, and that this potential is related to the suppression of tremor in the contralateral arm. We measured cortical activity with electroencephalography in 5 subjects (seven brain hemispheres) across a range of stimulator settings, and reversal of the anode and cathode electrode contacts minimized the stimulus artifact, allowing visualization of brain activity. Regression quantified the relationship between stimulation parameters and both the peak of the short latency potential and tremor suppression. Stimulation generated a polyphasic event-related potential in the ipsilateral sensorimotor cortex, with peaks at discrete latencies beginning less than 1 ms after stimulus onset (mean latencies 0.9 ± 0.2, 5.6 ± 0.7, and 13.9 ± 1.4 ms, denoted R1, R2, and R3, respectively). R1 showed more fixed timing than the subsequent peaks in the response (P < 0.0001, Levene's test), and R1 amplitude and frequency were both closely associated with tremor suppression (P < 0.0001, respectively). These findings demonstrate that effective VIM thalamic stimulation for essential tremor activates the cerebral cortex at approximately 1 ms after the stimulus pulse. The association between this short latency potential and tremor suppression suggests that DBS may improve tremor by synchronizing the precise timing of discharges in nearby axons and, by extension, the distributed motor network to the stimulation frequency or one of its subharmonics.


Assuntos
Córtex Cerebral/fisiopatologia , Estimulação Encefálica Profunda/métodos , Potenciais Evocados/fisiologia , Tempo de Reação/fisiologia , Tálamo/fisiologia , Tremor/terapia , Idoso , Biofísica , Mapeamento Encefálico , Eletroencefalografia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fatores de Tempo , Tremor/patologia
4.
Mov Disord ; 27(7): 864-73, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22648508

RESUMO

Subthalamic deep brain stimulation (DBS) is superior to medical therapy for the motor symptoms of advanced Parkinson's disease (PD), and additional evidence suggests that it improves refractory symptoms of essential tremor, primary generalized dystonia, and obsessive-compulsive disorder. Despite this, its therapeutic mechanism is unknown. We hypothesized that subthalamic stimulation activates the cerebral cortex at short latencies after stimulus onset during clinically effective stimulation for PD. In 5 subjects (six hemispheres), EEG measured the response of cortex to subthalamic stimulation across a range of stimulation voltages and frequencies. Novel analytical techniques reversed the anode and cathode electrode contacts and summed the resulting pair of event-related potentials to suppress the stimulation artifact. We found that subthalamic brain stimulation at 20 Hz activates the somatosensory cortex at discrete latencies (mean latencies: 1.0 ± 0.4, 5.7 ± 1.1, and 22.2 ± 1.8 ms, denoted as R1, R2, and R3, respectively). The amplitude of the short latency peak (R1) during clinically effective high-frequency stimulation is nonlinearly dependent on stimulation voltage (P < 0.001; repeated-measures analysis of variance), and its latency is less variable than that of R3 (1.02 versus 19.46 ms; P < 0.001, Levene's test). We conclude that clinically effective subthalamic brain stimulation in humans with PD activates the cerebral cortex at 1 ms after stimulus onset, most likely by antidromic activation. These findings suggest that alteration of the precise timing of action potentials in cortical neurons with axonal projections to the subthalamic region may be an important component of the therapeutic mechanism of subthalamic brain stimulation.


Assuntos
Córtex Cerebral/fisiopatologia , Estimulação Encefálica Profunda/métodos , Doença de Parkinson/patologia , Doença de Parkinson/terapia , Tempo de Reação/fisiologia , Subtálamo/fisiologia , Idoso , Análise de Variância , Eletroencefalografia , Potenciais Evocados/fisiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Atividade Motora/fisiologia , Dinâmica não Linear , Análise de Regressão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA