Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PLoS Comput Biol ; 18(2): e1009704, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35157698

RESUMO

A central problem in developmental and synthetic biology is understanding the mechanisms by which cells in a tissue or a Petri dish process external cues and transform such information into a coherent response, e.g., a terminal differentiation state. It was long believed that this type of positional information could be entirely attributed to a gradient of concentration of a specific signaling molecule (i.e., a morphogen). However, advances in experimental methodologies and computer modeling have demonstrated the crucial role of the dynamics of a cell's gene regulatory network (GRN) in decoding the information carried by the morphogen, which is eventually translated into a spatial pattern. This morphogen interpretation mechanism has gained much attention in systems biology as a tractable system to investigate the emergent properties of complex genotype-phenotype maps. In this study, we apply a Markov chain Monte Carlo (MCMC)-like algorithm to probe the design space of three-node GRNs with the ability to generate a band-like expression pattern (target phenotype) in the middle of an arrangement of 30 cells, which resemble a simple (1-D) morphogenetic field in a developing embryo. Unlike most modeling studies published so far, here we explore the space of GRN topologies with nodes having the potential to perceive the same input signal differently. This allows for a lot more flexibility during the search space process, and thus enables us to identify a larger set of potentially interesting and realizable morphogen interpretation mechanisms. Out of 2061 GRNs selected using the search space algorithm, we found 714 classes of network topologies that could correctly interpret the morphogen. Notably, the main network motif that generated the target phenotype in response to the input signal was the type 3 Incoherent Feed-Forward Loop (I3-FFL), which agrees with previous theoretical expectations and experimental observations. Particularly, compared to a previously reported pattern forming GRN topologies, we have uncovered a great variety of novel network designs, some of which might be worth inquiring through synthetic biology methodologies to test for the ability of network design with minimal regulatory complexity to interpret a developmental cue robustly.


Assuntos
Redes Reguladoras de Genes , Biologia de Sistemas , Expressão Gênica , Redes Reguladoras de Genes/genética , Transdução de Sinais/genética , Biologia Sintética
2.
Front Genet ; 11: 541, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32547603

RESUMO

Cancer cachexia is a metabolic syndrome with alterations in gene regulatory networks that consequently lead to skeletal muscle wasting. Integrating microRNAs-mRNAs omics profiles offers an opportunity to understand transcriptional and post-transcriptional regulatory networks underlying muscle wasting. Here, we used RNA sequencing to simultaneously integrate and explore microRNAs and mRNAs expression profiles in the tibialis anterior (TA) muscles of the Lewis Lung Carcinoma (LLC) model of cancer cachexia. We found 1,008 mRNAs and 18 microRNAs differentially expressed in cachectic mice compared with controls. Although our transcriptomic analysis demonstrated a high heterogeneity in mRNA profiles of cachectic mice, we identified a reduced number of differentially expressed genes that were uniformly regulated within cachectic muscles. This set of uniformly regulated genes is associated with the extracellular matrix (ECM), proteolysis, and inflammatory response. We also used transcriptomic data to perform enrichment analysis of transcriptional factor binding sites in promoter sequences, which revealed activation of the atrophy-related transcription factors NF-κB, Stat3, AP-1, and FoxO. Furthermore, the integration of mRNA and microRNA expression profiles identified post-transcriptional regulation by microRNAs of genes involved in ECM organization, cell migration, transcription factors binding, ion transport, and the FoxO signaling pathway. Our integrative analysis of microRNA-mRNA co-profiles comprehensively characterized regulatory relationships of molecular pathways and revealed microRNAs targeting ECM-associated genes in cancer cachexia.

3.
Trends Plant Sci ; 19(5): 292-303, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24709144

RESUMO

Systems biology-inspired genotype-phenotype mapping models are increasingly being used to study the evolutionary properties of molecular biological systems, in particular the general emergent properties of evolving systems, such as modularity, robustness, and evolvability. However, the level of abstraction at which many of these models operate might not be sufficient to capture all relevant intricacies of biological evolution in sufficient detail. Here, we argue that in particular gene and genome duplications, both evolutionary mechanisms of potentially major importance for the evolution of molecular systems and of special relevance to plant evolution, are not adequately accounted for in most GPM modeling frameworks, and that more fine-grained mechanistic models may significantly advance understanding of how gen(om)e duplication impacts molecular systems evolution.


Assuntos
Genoma de Planta/genética , Modelos Biológicos , Plantas/genética , Biologia de Sistemas , Evolução Molecular , Duplicação Gênica , Genótipo , Fenótipo
4.
Theor Biol Med Model ; 7: 7, 2010 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-20230643

RESUMO

BACKGROUND: Signal transduction networks represent the information processing systems that dictate which dynamical regimes of biochemical activity can be accessible to a cell under certain circumstances. One of the major concerns in molecular systems biology is centered on the elucidation of the robustness properties and information processing capabilities of signal transduction networks. Achieving this goal requires the establishment of causal relations between the design principle of biochemical reaction systems and their emergent dynamical behaviors. METHODS: In this study, efforts were focused in the construction of a relatively well informed, deterministic, non-linear dynamic model, accounting for reaction mechanisms grounded on standard mass action and Hill saturation kinetics, of the canonical reaction topology underlying Toll-like receptor 4 (TLR4)-mediated signaling events. This signaling mechanism has been shown to be deployed in macrophages during a relatively short time window in response to lipopolysaccharide (LPS) stimulation, which leads to a rapidly mounted innate immune response. An extensive computational exploration of the biochemical reaction space inhabited by this signal transduction network was performed via local and global perturbation strategies. Importantly, a broad spectrum of biologically plausible dynamical regimes accessible to the network in widely scattered regions of parameter space was reconstructed computationally. Additionally, experimentally reported transcriptional readouts of target pro-inflammatory genes, which are actively modulated by the network in response to LPS stimulation, were also simulated. This was done with the main goal of carrying out an unbiased statistical assessment of the intrinsic robustness properties of this canonical reaction topology. RESULTS: Our simulation results provide convincing numerical evidence supporting the idea that a canonical reaction mechanism of the TLR4 signaling network is capable of performing information processing in a robust manner, a functional property that is independent of the signaling task required to be executed. Nevertheless, it was found that the robust performance of the network is not solely determined by its design principle (topology), but this may be heavily dependent on the network's current position in biochemical reaction space. Ultimately, our results enabled us the identification of key rate limiting steps which most effectively control the performance of the system under diverse dynamical regimes. CONCLUSIONS: Overall, our in silico study suggests that biologically relevant and non-intuitive aspects on the general behavior of a complex biomolecular network can be elucidated only when taking into account a wide spectrum of dynamical regimes attainable by the system. Most importantly, this strategy provides the means for a suitable assessment of the inherent variational constraints imposed by the structure of the system when systematically probing its parameter space.


Assuntos
Transdução de Sinais , Receptor 4 Toll-Like/química , Incerteza , Cinética
5.
PLoS One ; 4(9): e6823, 2009 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-19738908

RESUMO

The way in which the information contained in genotypes is translated into complex phenotypic traits (i.e. embryonic expression patterns) depends on its decoding by a multilayered hierarchy of biomolecular systems (regulatory networks). Each layer of this hierarchy displays its own regulatory schemes (i.e. operational rules such as +/- feedback) and associated control parameters, resulting in characteristic variational constraints. This process can be conceptualized as a mapping issue, and in the context of highly-dimensional genotype-phenotype mappings (GPMs) epistatic events have been shown to be ubiquitous, manifested in non-linear correspondences between changes in the genotype and their phenotypic effects. In this study I concentrate on epistatic phenomena pervading levels of biological organization above the genetic material, more specifically the realm of molecular networks. At this level, systems approaches to studying GPMs are specially suitable to shed light on the mechanistic basis of epistatic phenomena. To this aim, I constructed and analyzed ensembles of highly-modular (fully interconnected) networks with distinctive topologies, each displaying dynamic behaviors that were categorized as either arbitrary or functional according to early patterning processes in the Drosophila embryo. Spatio-temporal expression trajectories in virtual syncytial embryos were simulated via reaction-diffusion models. My in silico mutational experiments show that: 1) the average fitness decay tendency to successively accumulated mutations in ensembles of functional networks indicates the prevalence of positive epistasis, whereas in ensembles of arbitrary networks negative epistasis is the dominant tendency; and 2) the evaluation of epistatic coefficients of diverse interaction orders indicates that, both positive and negative epistasis are more prevalent in functional networks than in arbitrary ones. Overall, I conclude that the phenotypic and fitness effects of multiple perturbations are strongly conditioned by both the regulatory architecture (i.e. pattern of coupled feedback structures) and the dynamic nature of the spatio-temporal expression trajectories displayed by the simulated networks.


Assuntos
Epistasia Genética , Regulação da Expressão Gênica no Desenvolvimento , Redes Reguladoras de Genes , Algoritmos , Animais , Mapeamento Cromossômico , Simulação por Computador , Análise Mutacional de DNA , Drosophila , Elementos Facilitadores Genéticos , Variação Genética , Genótipo , Modelos Estatísticos , Fenótipo , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA