Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Photochem Photobiol B ; 220: 112210, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34000487

RESUMO

Amaranths are recognized by their high nutritive value and their natural tolerance to environmental stresses. In this study, physiological differences in response to water stress were compared between A. hybridus, a wild species considered as weed, and A. hypochondriacus, the most cultivated species for grain production, under the hypothesis that wild species have better adaptation to stress. In both species, photosynthetic parameters, pigments, and gene expression of selected genes were assessed. Biomass, effective quantum efficiency (ΦPSII), photochemical quenching (qP), and electron transport rate (ETR) values were reduced only in A. hybridus due to water deficit. Drought stress promoted proline accumulation by twice in A. hybridus but until three times in A. hypochondriacus. In both species, drought stress reduced net assimilation rate (A), transpiration rate (E), stomatal conductance (gs), and the expression of phosphoenol pyruvate carboxylase (PEPC). While, maximum quantum efficiency (Fv/Fm), chlorophyll, betacyanins, and the expression of ribulose1-5, bisphosphate carboxylase/oxygenase large subunit (LSU) did not change when plants were subjected to water stress. Likewise, both species accumulated total phenolic compounds and Oxalyl-CoA gene was up-regulated in response to drought. Our results have shown that A. hypochondriacus, the cultivated species, exhibited better tolerance to drought than A. hybridus, the wild species, probably due to an unconsciously selected trait during the domestication process.


Assuntos
Amaranthus/metabolismo , Biomassa , Clorofila/metabolismo , Secas , Osmorregulação , Estresse Fisiológico , Acil Coenzima A/genética , Amaranthus/genética , Amaranthus/fisiologia , Regulação para Baixo , Fluorescência , Genes de Plantas , Fosfoenolpiruvato Carboxiquinase (ATP)/genética , Fotossíntese
2.
Front Cell Dev Biol ; 9: 642352, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33681228

RESUMO

The Notch signaling pathway plays an essential role in a wide variety of biological processes including cell fate determination of vascular endothelial cells and the regulation of arterial differentiation and angiogenesis. The Notch pathway is also an essential regulator of tumor growth and survival by functioning as either an oncogene or a tumor suppressor in a context-dependent manner. Crosstalk between the Notch and other signaling pathways is also pivotal in tumor progression by promoting cancer cell growth, migration, invasion, metastasis, tumor angiogenesis, and the expansion of cancer stem cells (CSCs). In this review, we provide an overview and update of Notch signaling in endothelial cell fate determination and functioning, angiogenesis, and tumor progression, particularly in the development of CSCs and therapeutic resistance. We further summarize recent studies on how endothelial signaling crosstalk with the Notch pathway contributes to tumor angiogenesis and the development of CSCs, thereby providing insights into vascular biology within the tumor microenvironment and tumor progression.

3.
Enzyme Microb Technol ; 134: 109477, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32044024

RESUMO

In this work, the expression of an α-amylase from Bacillus megaterium on the cell surface of Escherichia coli strains WDHA (Δ hycA and Δ ldhA) and WDHFP (Δ hycA, Δ frdD and Δ pta) by the autodisplay adhesin involved in diffuse adherence (AIDA) system was carried out with the purpose to confer the ability to E. coli strains to degrade starch and thus produce hydrogen, ethanol and succinic acid. For the characterization of the biocatalyst, the effect of temperature (30-70 °C), pH (3-6) and CaCl2 concentration (0-25 mM), as well as the thermostability of the biocatalyst (55-80 °C) at several time intervals (15-60 min) were evaluated. The results showed that the biocatalyst had a maximum activity at 55 °C and pH 4.5. Calcium was required for the activity as well for the thermal stability of the biocatalyst. The calculated Vmax and Km values were 0.24 U/cm3 and 5.8 mg/cm3, respectively. Furthermore, a set of anaerobic batch fermentations was carried out using 10 g/dm3 of starch and 1 g/dm3 of glucose as carbon sources in 120 cm3 serological bottles, using WDHA and WDHFP strains harboring the pAIDA-amyA plasmid. The hydrogen production for WDHA was 1056.06 cm3/dm3 and the succinic acid yield was 0.68 g/gstarch, whereas WDHFP strain produced 1689.68 cm3/dm3 of hydrogen and an ethanol yield of 0.28 g/gstarch. This work represents a promising strategy to improve the exploitation of starchy biomass for the production of biofuels (hydrogen and ethanol) or succinate without the need of a pre-saccharification process.


Assuntos
Bacillus megaterium/enzimologia , Etanol/metabolismo , Hidrogênio/metabolismo , Amido/metabolismo , Ácido Succínico/metabolismo , alfa-Amilases/metabolismo , Bacillus megaterium/genética , Biocombustíveis , Escherichia coli/genética , Escherichia coli/metabolismo , Fermentação , Concentração de Íons de Hidrogênio , Temperatura , alfa-Amilases/genética
4.
Chem Res Toxicol ; 32(9): 1863-1870, 2019 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-31423773

RESUMO

Human exposure to phthalates has received special attention due to their possible adverse human health effects. Diisononyl phthalate (DINP) is a plasticizer still widely used in many products, despite being considered an endocrine disruptor. In this study, we evaluated DINP's cytotoxicity, its effect on the levels of reactive oxygen species (ROS), and its effect on sirtuin expression in HepG2 cells. Results showed that 1 µg/mL DINP significantly downregulated Sirt1, Sirt2, Sirt3, and Sirt5 gene expression (p < 0.05), while other sirtuins remained unaffected. Furthermore, protein levels of Sirt1 and Sirt3 were significantly downregulated by 1 µg/mL DINP. On the other hand, 100 µg/mL DINP doubled the levels of lysine acetylation proteins (increased 2-fold) as well as reactive oxygen species (ROS) compared with the controls. In conclusion, our study suggests, for the first time, that DINP regulates the potential epigenetic disruptor sirtuin family and leads to induction of ROS via sirtuins.


Assuntos
Regulação para Baixo/efeitos dos fármacos , Disruptores Endócrinos/toxicidade , Ácidos Ftálicos/toxicidade , Plastificantes/toxicidade , Sirtuínas/metabolismo , Acetilação/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Epigênese Genética/efeitos dos fármacos , Células Hep G2 , Humanos , Espécies Reativas de Oxigênio/metabolismo
5.
Chem Res Toxicol ; 32(5): 935-942, 2019 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-31016965

RESUMO

Artificial environmental endocrine disrupting chemicals (EDCs) exert public health concerns. Exposure to EDCs may induce various disorders in the cardiometabolic system. However, the underlying mechanisms remain largely unknown. Over the past decade, an abundance of evidence has emerged demonstrating a close link between cardiometabolic disorders and inflammation. The aim of the present study was to evaluate the immunological effects on macrophages from six EDCs via sirtuin (SIRT) regulation using the murine macrophage RAW 264.7 cell. We studied first the effects of these EDCs, including a series of doses of benzyl butyl phthalate (BBP), bisphenol A (BPA), diethylhexyl phthalate (DEHP), mono-(2-ethylhexyl)phthalate (MEHP), perfluorooctanoate (PFOA), or perfluorooctanesulfonate (PFOS), on SIRT1-7 transcriptional level. Among these EDCs, MEHP significantly decreased all sirtuin genes' expression in a dose-dependent manner. Under MEHP treatment, SIRT activity and protein expression were significantly decreased, while the protein expression of acetylated NF-κB was significantly increased along with significant increases in IL-1ß transcription. These results indicate that MEHP may induce the inflammatory response via SIRT-mediated acetylation of NF-κB. Additionally, the enhanced IL-1ß secretion in the presence of 50 µM MEHP ( P < 0.01) also supports inflammasome activation (significant ASC and NLRP3 protein augmentation). Both events may be regulated by MEHP induced reactive oxygen species ( P < 0.01). In conclusion, our study suggests for the first time that EDCs differentially modulate sirtuins' gene expression levels in macrophages and that a specific phthalate MEHP can lead to an increased inflammatory response by impairing vital epigenetic regulators and inflammasome activation.


Assuntos
Dietilexilftalato/análogos & derivados , Disruptores Endócrinos/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Inflamassomos/metabolismo , Inflamação/etiologia , Sirtuínas/metabolismo , Acetilação/efeitos dos fármacos , Ácidos Alcanossulfônicos/farmacologia , Animais , Compostos Benzidrílicos/farmacologia , Caprilatos/farmacologia , Dietilexilftalato/farmacologia , Epigênese Genética/efeitos dos fármacos , Fluorocarbonos/farmacologia , Inflamação/genética , Interleucina-1beta/metabolismo , Camundongos , NF-kappa B/química , NF-kappa B/metabolismo , Fenóis/farmacologia , Ácidos Ftálicos/farmacologia , Células RAW 264.7 , Espécies Reativas de Oxigênio/metabolismo , Sirtuínas/genética
6.
Cytotechnology ; 71(2): 553-561, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30715687

RESUMO

Phthalates are esters of phthalic acid used industrially as plastic additives, however, these are not covalently bound to the polymer matrix and therefore can be released to the environment. The aim of this study was to evaluate the effect of four phthalates: dibutyl phthalate (DBP), benzyl butyl phthalate (BBP), diethyl phthalate (DEP) and diethylhexyl phthalate (DEHP) on the in vitro expansion of human hematopoietic cells from umbilical cord blood. For this, 0.5 × 106 cells/mL were exposure to concentrations ranging from 0.1 to 100 µg/mL and the total cell expansion was determined after 14 days of culture in IMDM-cytokines medium. The control cultures attained 1.31 ± 0.21 × 106 cell/mL, whereas the cultures exposed to DBP, BBP and DEHP showed a reduction from 23 to 81%, 17 to 69% and 15 to 93.5%, respectively. DEP did not affect the total cell expansion. The most significant decrease on total cell expansion was observed at 0.1 µg/mL DBP, 100 µg/mL BBP and 10 µg/mL DEHP (p < 0.05). Additionally, the effect of these compounds on the expansion of hematopoietic progenitors was analyzed by clonogenic assays as colony forming units (CFU). The CFU decreased considerably compared with respect to the control cultures. The reduction was 74.6 and 99.1% at 10 and 100 µg/mL DBP respectively, whereas 100 µg/mL BBP and 100 µg/mL DEHP reduced the CFU expansion in 97.1% and 81%, respectively. Cultures exposed to DEP did not show significant differences. The results demonstrate the toxicity of DBP, BBP and DEHP on the human hematopoietic stem cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA