Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Insect Biochem Mol Biol ; 122: 103412, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32417415

RESUMO

Anastrepha ludens is a major pest of fruits including citrus and mangoes in Mexico and Central America with major economic and social impacts. Despite its importance, our knowledge on its embryonic development is scarce. Here, we report the first cytological study of embryonic development in A. ludens and provide a transcriptional landscape during key embryonic stages. We established 17 stages of A. ludens embryogenesis that closely resemble the morphological events observed in Drosophila. In addition to the extended duration of embryonic development, we observed notable differences including yolk extrusion at both poles of the embryo, distinct nuclear division waves in the syncytial blastoderm and a heterochronic change during the involution of the head. Characterization of the transcriptional dynamics during syncytial blastoderm, cellular blastoderm and gastrulation, showed that approximately 9000 different transcripts are present at each stage. Even though we identified most of the transcripts with a role during embryonic development present in Drosophila, including sex determination genes, a number of transcripts were absent not only in A. ludens but in other tephritids such as Ceratitis capitata and Bactrocera dorsalis. Intriguingly, some A. ludens embryo transcripts encode proteins present in other organisms but not in other flies. Furthermore, we developed an RNA in situ hybridization protocol that allowed us to obtain the expression patterns of genes whose functions are important in establishing the embryonic body pattern. Our results revealed novel tephritid-specific features during A. ludens embryonic development and open new avenues for strategies aiming to control this important pest.


Assuntos
Desenvolvimento Embrionário , Tephritidae/embriologia , Transcriptoma , Animais , Embrião não Mamífero/citologia , Embrião não Mamífero/metabolismo , Perfilação da Expressão Gênica
2.
Planta ; 241(2): 435-48, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25366556

RESUMO

miRNAs are a class of small non-coding RNAs that regulate gene expression. They are involved in the control of many developmental processes, including fruit development. The increasing amount of information on miRNAs, on their expression, abundance, and conservation between various species, provides a new opportunity to study the role of miRNAs in non-model plant species. In this work, we used a combination of Northern blot and tissue print hybridization analysis to identify conserved miRNAs expressed during prickly pear cactus (Opuntia ficus indica) fruit development. Comparative profiling detected the expression of 34 miRNAs, which were clustered in three different groups that were associated with the different phases of fruit development. Variation in the level of miRNA expression was observed. Gradual expression increase of several miRNAs was observed during fruit development, including miR164. miR164 was selected for stem-loop RT-PCR and for a detailed spatial-temporal expression analysis. At early floral stages, miR164 was mainly localized in meristematic tissues, boundaries and fusion zones, while it was more homogenously expressed in fruit tissues. Our results provide the first evidence of miRNA expression in the prickly pear cactus and provide the basis for future research on miRNAs in Opuntia. Moreover, our analyses suggest that miR164 plays different roles during prickly pear cactus fruit development.


Assuntos
Frutas/genética , MicroRNAs/genética , Opuntia/genética , Regulação da Expressão Gênica de Plantas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA