Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Elife ; 112022 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-35678393

RESUMO

Antibiotics of the ß-lactam (penicillin) family inactivate target enzymes called D,D-transpeptidases or penicillin-binding proteins (PBPs) that catalyze the last cross-linking step of peptidoglycan synthesis. The resulting net-like macromolecule is the essential component of bacterial cell walls that sustains the osmotic pressure of the cytoplasm. In Escherichia coli, bypass of PBPs by the YcbB L,D-transpeptidase leads to resistance to these drugs. We developed a new method based on heavy isotope labeling and mass spectrometry to elucidate PBP- and YcbB-mediated peptidoglycan polymerization. PBPs and YcbB similarly participated in single-strand insertion of glycan chains into the expanding bacterial side wall. This absence of any transpeptidase-specific signature suggests that the peptidoglycan expansion mode is determined by other components of polymerization complexes. YcbB did mediate ß-lactam resistance by insertion of multiple strands that were exclusively cross-linked to existing tripeptide-containing acceptors. We propose that this undocumented mode of polymerization depends upon accumulation of linear glycan chains due to PBP inactivation, formation of tripeptides due to cleavage of existing cross-links by a ß-lactam-insensitive endopeptidase, and concerted cross-linking by YcbB.


Assuntos
Peptidil Transferases , Antibacterianos/metabolismo , Proteínas de Bactérias/metabolismo , Parede Celular/metabolismo , Escherichia coli/metabolismo , Marcação por Isótopo , Espectrometria de Massas , Proteínas de Ligação às Penicilinas/metabolismo , Peptidoglicano/metabolismo , Peptidil Transferases/metabolismo , beta-Lactamas/metabolismo
2.
mBio ; 13(2): e0038522, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35377167

RESUMO

Toxin-antitoxin systems are genetic elements that are widespread in prokaryotes. Although molecular mode of action of many of these toxins has been identified, their biological functions are mostly unknown. We investigated the functional integration of the TisB/IstR toxin-antitoxin system in the Escherichia coli SOS genotoxic stress response network. We showed that the tisB gene is induced in cells exposed to high doses of the genotoxic antibiotic trimethoprim. However, we also found that TisB contributes to trimethoprim-induced lethality. This is a consequence of the TisB-induced drop in the proton motive force (PMF), which results in blocking the thymine import and therefore the functioning of the pyrimidine salvage pathway. Conversely, a TisB-induced PMF drop protects cells by preventing the import of some other toxic compounds, like the aminoglycoside antibiotic gentamicin and colicin M, in the SOS-induced cells. Colicins are cytotoxic molecules produced by Enterobacterales when they are exposed to strong genotoxic stresses in order to compete with other microbiota members. We indeed found that TisB contributes to E. coli's fitness during mouse gut colonization. Based on the results obtained here, we propose that the primary biological role of the TisB toxin is to increase the probability of survival and maintenance in the mammalian gut of their bacterial hosts when they have to simultaneously deal with massive DNA damages and a fierce chemical warfare with other microbiota members. IMPORTANCE The contribution of toxin-antitoxin systems to the persistence of bacteria to antibiotics has been intensively studied. This is also the case with the E. coli TisB/IstR toxin-antitoxin system, but the contribution of TisB to the persistence to antibiotics turned out to be not as straightforward as anticipated. In this study, we show that TisB can decrease, but also increase, cytotoxicity of different antibiotics. This inconsistency has a common origin, i.e., TisB-induced collapse of the PMF, which impacts the import and the action of different antibiotics. By taking into account the natural habitat of TisB bacterial hosts, the facts that this toxin-antitoxin system is integrated into the genotoxic stress response regulon SOS and that both SOS regulon and TisB are required for E. coli to colonize the host intestine, and the phenotypic consequences of the collapse of the PMF, we propose that TisB protects its hosts from cytotoxic molecules produced by competing intestinal bacteria.


Assuntos
Colicinas , Infecções por Escherichia coli , Animais , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Colicinas/genética , Dano ao DNA , Escherichia coli/metabolismo , Mamíferos , Camundongos , Trimetoprima
3.
Cell Chem Biol ; 29(2): 276-286.e4, 2022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-34990601

RESUMO

ß-Lactam antibiotics disrupt the assembly of peptidoglycan (PG) within the bacterial cell wall by inhibiting the enzymatic activity of penicillin-binding proteins (PBPs). It was recently shown that ß-lactam treatment initializes a futile cycle of PG synthesis and degradation, highlighting major gaps in our understanding of the lethal effects of PBP inhibition by ß-lactam antibiotics. Here, we assess the downstream metabolic consequences of treatment of Escherichia coli with the ß-lactam mecillinam and show that lethality from PBP2 inhibition is a specific consequence of toxic metabolic shifts induced by energy demand from multiple catabolic and anabolic processes, including accelerated protein synthesis downstream of PG futile cycling. Resource allocation into these processes is coincident with alterations in ATP synthesis and utilization, as well as a broadly dysregulated cellular redox environment. These results indicate that the disruption of normal anabolic-catabolic homeostasis by PBP inhibition is an essential factor for ß-lactam antibiotic lethality.


Assuntos
Andinocilina/farmacologia , Antibacterianos/farmacologia , Proteínas de Escherichia coli/antagonistas & inibidores , Escherichia coli/efeitos dos fármacos , Proteínas de Ligação às Penicilinas/antagonistas & inibidores , Andinocilina/química , Antibacterianos/química , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Homeostase/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Proteínas de Ligação às Penicilinas/metabolismo
4.
PLoS Comput Biol ; 17(10): e1009475, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34624014

RESUMO

Evolution is often an obstacle to the engineering of stable biological systems due to the selection of mutations inactivating costly gene circuits. Gene overlaps induce important constraints on sequences and their evolution. We show that these constraints can be harnessed to increase the stability of costly genes by purging loss-of-function mutations. We combine computational and synthetic biology approaches to rationally design an overlapping reading frame expressing an essential gene within an existing gene to protect. Our algorithm succeeded in creating overlapping reading frames in 80% of E. coli genes. Experimentally, scoring mutations in both genes of such overlapping construct, we found that a significant fraction of mutations impacting the gene to protect have a deleterious effect on the essential gene. Such an overlap thus protects a costly gene from removal by natural selection by associating the benefit of this removal with a larger or even lethal cost. In our synthetic constructs, the overlap converts many of the possible mutants into evolutionary dead-ends, reducing the evolutionary potential of the system and thus increasing its stability over time.


Assuntos
Genes Essenciais/genética , Engenharia Genética/métodos , Mutação/genética , Biologia Sintética/métodos , Algoritmos , Escherichia coli/genética , Evolução Molecular , Genômica , Fases de Leitura/genética , Análise de Sequência de DNA
5.
Nat Methods ; 16(4): 303-306, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30858599

RESUMO

Antibiotic screens typically rely on growth inhibition to characterize compound bioactivity-an approach that cannot be used to assess the bactericidal activity of antibiotics against bacteria in drug-tolerant states. To address this limitation, we developed a multiplexed assay that uses metabolism-sensitive staining to report on the killing of antibiotic-tolerant bacteria. This method can be used with diverse bacterial species and applied to genome-scale investigations to identify therapeutic targets against tolerant pathogens.


Assuntos
Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Farmacorresistência Bacteriana , Escherichia coli/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Ciprofloxacina/farmacologia , Dano ao DNA , Escherichia coli/crescimento & desenvolvimento , Deleção de Genes , Marcação In Situ das Extremidades Cortadas , Microscopia de Fluorescência , Mutação , Fenótipo , Especificidade da Espécie
6.
Antibiotics (Basel) ; 7(2)2018 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-29642475

RESUMO

The maintenance of DNA supercoiling is essential for the proper regulation of a plethora of biological processes. As a consequence of this mode of regulation, ahead of the replication fork, DNA replication machinery is prone to introducing supercoiled regions into the DNA double helix. Resolution of DNA supercoiling is essential to maintain DNA replication rates that are amenable to life. This resolution is handled by evolutionarily conserved enzymes known as topoisomerases. The activity of topoisomerases is essential, and therefore constitutes a prime candidate for targeting by antibiotics. In this review, we present hallmark investigations describing the mode of action of quinolones, one of the antibacterial classes targeting the function of topoisomerases in bacteria. By chronologically analyzing data gathered on the mode of action of this imperative antibiotic class, we highlight the necessity to look beyond primary drug-target interactions towards thoroughly understanding the mechanism of quinolones at the level of the cell.

7.
Mol Cell ; 68(6): 1147-1154.e3, 2017 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-29225037

RESUMO

Physiologic and environmental factors can modulate antibiotic activity and thus pose a significant challenge to antibiotic treatment. The quinolone class of antibiotics, which targets bacterial topoisomerases, fails to kill bacteria that have grown to high density; however, the mechanistic basis for this persistence is unclear. Here, we show that exhaustion of the metabolic inputs that couple carbon catabolism to oxidative phosphorylation is a primary cause of growth phase-dependent persistence to quinolone antibiotics. Supplementation of stationary-phase cultures with glucose and a suitable terminal electron acceptor to stimulate respiratory metabolism is sufficient to sensitize cells to quinolone killing. Using this approach, we successfully sensitize high-density populations of Escherichia coli, Staphylococcus aureus, and Mycobacterium smegmatis to quinolone antibiotics. Our findings link growth-dependent quinolone persistence to discrete impairments in respiratory metabolism and identify a strategy to kill non-dividing bacteria.


Assuntos
Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Infecções Bacterianas/tratamento farmacológico , Carbono/metabolismo , Respiração Celular/fisiologia , Farmacorresistência Bacteriana , Oxigênio/metabolismo , Quinolonas/farmacologia , Bactérias/crescimento & desenvolvimento , Infecções Bacterianas/microbiologia , Testes de Sensibilidade Microbiana , Fosforilação Oxidativa
8.
Cell Chem Biol ; 24(2): 195-206, 2017 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-28111098

RESUMO

Metabolically dormant bacteria present a critical challenge to effective antimicrobial therapy because these bacteria are genetically susceptible to antibiotic treatment but phenotypically tolerant. Such tolerance has been attributed to impaired drug uptake, which can be reversed by metabolic stimulation. Here, we evaluate the effects of central carbon metabolite stimulations on aminoglycoside sensitivity in the pathogen Pseudomonas aeruginosa. We identify fumarate as a tobramycin potentiator that activates cellular respiration and generates a proton motive force by stimulating the tricarboxylic acid (TCA) cycle. In contrast, we find that glyoxylate induces phenotypic tolerance by inhibiting cellular respiration with acetyl-coenzyme A diversion through the glyoxylate shunt, despite drug import. Collectively, this work demonstrates that TCA cycle activity is important for both aminoglycoside uptake and downstream lethality and identifies a potential strategy for potentiating aminoglycoside treatment of P. aeruginosa infections.


Assuntos
Antibacterianos/farmacologia , Carbono/metabolismo , Ciclo do Ácido Cítrico/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos dos fármacos , Antibacterianos/química , Biofilmes/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Pseudomonas aeruginosa/metabolismo
9.
Nat Genet ; 48(5): 581-6, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26998690

RESUMO

Antibiotic resistance is an increasingly serious public health threat. Understanding pathways allowing bacteria to survive antibiotic stress may unveil new therapeutic targets. We explore the role of the bacterial epigenome in antibiotic stress survival using classical genetic tools and single-molecule real-time sequencing to characterize genomic methylation kinetics. We find that Escherichia coli survival under antibiotic pressure is severely compromised without adenine methylation at GATC sites. Although the adenine methylome remains stable during drug stress, without GATC methylation, methyl-dependent mismatch repair (MMR) is deleterious and, fueled by the drug-induced error-prone polymerase Pol IV, overwhelms cells with toxic DNA breaks. In multiple E. coli strains, including pathogenic and drug-resistant clinical isolates, DNA adenine methyltransferase deficiency potentiates antibiotics from the ß-lactam and quinolone classes. This work indicates that the GATC methylome provides structural support for bacterial survival during antibiotic stress and suggests targeting bacterial DNA methylation as a viable approach to enhancing antibiotic activity.


Assuntos
Metilação de DNA , DNA Bacteriano/metabolismo , Farmacorresistência Bacteriana/genética , Adenina/metabolismo , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Estresse Fisiológico
10.
Proc Natl Acad Sci U S A ; 112(27): 8173-80, 2015 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-26100898

RESUMO

Bacteriostatic and bactericidal antibiotic treatments result in two fundamentally different phenotypic outcomes--the inhibition of bacterial growth or, alternatively, cell death. Most antibiotics inhibit processes that are major consumers of cellular energy output, suggesting that antibiotic treatment may have important downstream consequences on bacterial metabolism. We hypothesized that the specific metabolic effects of bacteriostatic and bactericidal antibiotics contribute to their overall efficacy. We leveraged the opposing phenotypes of bacteriostatic and bactericidal drugs in combination to investigate their activity. Growth inhibition from bacteriostatic antibiotics was associated with suppressed cellular respiration whereas cell death from most bactericidal antibiotics was associated with accelerated respiration. In combination, suppression of cellular respiration by the bacteriostatic antibiotic was the dominant effect, blocking bactericidal killing. Global metabolic profiling of bacteriostatic antibiotic treatment revealed that accumulation of metabolites involved in specific drug target activity was linked to the buildup of energy metabolites that feed the electron transport chain. Inhibition of cellular respiration by knockout of the cytochrome oxidases was sufficient to attenuate bactericidal lethality whereas acceleration of basal respiration by genetically uncoupling ATP synthesis from electron transport resulted in potentiation of the killing effect of bactericidal antibiotics. This work identifies a link between antibiotic-induced cellular respiration and bactericidal lethality and demonstrates that bactericidal activity can be arrested by attenuated respiration and potentiated by accelerated respiration. Our data collectively show that antibiotics perturb the metabolic state of bacteria and that the metabolic state of bacteria impacts antibiotic efficacy.


Assuntos
Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Viabilidade Microbiana/efeitos dos fármacos , Consumo de Oxigênio/efeitos dos fármacos , Trifosfato de Adenosina/biossíntese , Antibacterianos/classificação , Bactérias/genética , Bactérias/metabolismo , Fenômenos Fisiológicos Bacterianos/efeitos dos fármacos , Interações Medicamentosas , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/metabolismo , Metaboloma/efeitos dos fármacos , Metabolômica/métodos , Testes de Sensibilidade Microbiana , Mutação , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/crescimento & desenvolvimento , Staphylococcus aureus/metabolismo
11.
Antibiotics (Basel) ; 2(1): 100-14, 2013 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-27029295

RESUMO

Nowadays, the emergence and spread of antibiotic resistance have become an utmost medical and economical problem. It has also become evident that subinhibitory concentrations of antibiotics, which pollute all kind of terrestrial and aquatic environments, have a non-negligible effect on the evolution of antibiotic resistance in bacterial populations. Subinhibitory concentrations of antibiotics have a strong effect on mutation rates, horizontal gene transfer and biofilm formation, which may all contribute to the emergence and spread of antibiotic resistance. Therefore, the molecular mechanisms and the evolutionary pressures shaping the bacterial responses to subinhibitory concentrations of antibiotics merit to be extensively studied. Such knowledge is valuable for the development of strategies to increase the efficacy of antibiotic treatments and to extend the lifetime of antibiotics used in therapy by slowing down the emergence of antibiotic resistance.

12.
Nucleic Acids Res ; 39(10): 4192-201, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21300638

RESUMO

Escherichia coli SOS functions constitute a multifaceted response to DNA damage. We undertook to study the role of yafP, a SOS gene with unknown function. yafP is part of an operon also containing the dinB gene coding for DNA Polymerase IV (PolIV). Our phylogenetic analysis showed that the gene content of this operon is variable but that the dinB and the yafP genes are conserved in the majority of E. coli natural isolates. Therefore, we studied if these proteins are functionally linked. Using a murine septicaemia model, we showed that YafP activity reduced the bacterial fitness in the absence of PolIV. Similarly, YafP increased cytotoxicity of two DNA damaging nitroaromatic compounds, 4-nitroquinoline-1-oxide (NQO) and nitrofurazone, in the absence of PolIV. The fact that PolIV counterbalances YafP-induced cytotoxicity could explain why these two genes are transcriptionally linked. We also studied the involvement of YafP in genotoxic-stress induced mutagenesis and found that PolIV and YafP reduced NQO-induced mutagenicity. The YafP antimutator activity was independent of the PolIV activity. Given that YafP was annotated as a putative acetyltransferase, it could be that YafP participates in the metabolic transformation of genotoxic compounds, hence modulating the balance between their mutagenicity and cytotoxicity.


Assuntos
4-Nitroquinolina-1-Óxido/toxicidade , Acetiltransferases/fisiologia , Dano ao DNA , Proteínas de Escherichia coli/fisiologia , Mutagênicos/toxicidade , Nitrofurazona/toxicidade , Acetiltransferases/biossíntese , Acetiltransferases/genética , Animais , DNA Polimerase beta/genética , Escherichia coli/classificação , Escherichia coli/genética , Proteínas de Escherichia coli/biossíntese , Proteínas de Escherichia coli/genética , Camundongos , Viabilidade Microbiana , Mutação , Óperon , Filogenia
13.
Am Nat ; 170(1): 143-54, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17853998

RESUMO

Though predation, productivity (nutrient richness), spatial heterogeneity, and disturbance regimes are known to influence species diversity, interactions between these factors remain largely unknown. Predation has been shown to interact with productivity and with spatial heterogeneity, but few experimental studies have focused on how predation and disturbance interact to influence prey diversity. We used theory and experiments to investigate how these factors influence diversification of Pseudomonas fluorescens by manipulating both predation (presence or absence of Bdellovibrio bacteriovorus) and disturbance (frequency and intensity of disturbance). Our results show that in a homogeneous environment, predation is essential to promote prey species diversity. However, in most but not all treatments, elevated diversity was transitory, implying that the effect of predation on diversity was strongly influenced by disturbance. Both our experimental and theoretical results suggest that disturbance interacts with predation by modifying the interplay of resource and apparent competition among prey.


Assuntos
Bdellovibrio/fisiologia , Biodiversidade , Pseudomonas fluorescens/virologia , Modelos Biológicos , Mutação , Pseudomonas fluorescens/classificação , Pseudomonas fluorescens/genética , Especificidade da Espécie
14.
BMC Evol Biol ; 7: 133, 2007 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-17683620

RESUMO

BACKGROUND: Considerable attention has focused on how selection on dispersal and other core life-history strategies (reproductive effort, survival ability, colonization capacity) may lead to so-called dispersal syndromes. Studies on genetic variation in these syndromes within species could importantly increase our understanding of their evolution, by revealing whether traits co-vary across genetic lineages in the manner predicted by theoretical models, and by stimulating further hypotheses for experimental testing. Yet such studies remain scarce. Here we studied the ciliated protist Tetrahymena thermophila, a particularly interesting organism due to cells being able to transform into morphs differing dramatically in swim-speed. We investigated dispersal, morphological responses, reproductive performance, and survival in ten different clonal strains. Then, we examined whether life history traits co-varied in the manner classically predicted for ruderal species, examined the investment of different strains into short- and putative long-distance dispersal, while considering also the likely impact of semi-sociality (cell aggregation, secretion of 'growth factors') on dispersal strategies. RESULTS: Very significant among-strain differences were found with regard to dispersal rate, morphological commitment and plasticity, and almost all core life-history traits (e.g. survival, growth performance and strategy), with most of these traits being significantly intercorrelated. Some strains showed high short-distance dispersal rates, high colonization capacity, bigger cell size, elevated growth performance, and good survival abilities. These well performing strains, however, produced fewer fast-swimming dispersal morphs when subjected to environmental degradation than did philopatric strains performing poorly under normal conditions. CONCLUSION: Strong evidence was found for a genetic covariation between dispersal strategies and core life history traits in T. thermophila, with a fair fit of observed trait associations with classic colonizer models. However, the well performing strains with high colonization success and short-distance dispersal likely suffered under a long-distance dispersal disadvantage, due to producing fewer fast-swimming dispersal morphs than did philopatric strains. The smaller cell size at carrying capacity of the latter strains and their poor capacity to colonize as individual cells suggest that they may be adapted to greater levels of dependency on clone-mates (stronger sociality). In summary, differential exposure to selection on competitive and cooperative abilities, in conjunction with selective factors targeting specifically dispersal distance, likely contributed importantly to shaping T. thermophila dispersal and life history evolution.


Assuntos
Evolução Biológica , Tetrahymena thermophila/crescimento & desenvolvimento , Animais , Meios de Cultura , Variação Genética , Dinâmica Populacional , Tetrahymena thermophila/genética
15.
Evolution ; 60(6): 1177-86, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16892968

RESUMO

Host-parasite coevolution is often described as a process of reciprocal adaptation and counter adaptation, driven by frequency-dependent selection. This requires that different parasite genotypes perform differently on different host genotypes. Such genotype-by-genotype interactions arise if adaptation to one host (or parasite) genotype reduces performance on others. These direct costs of adaptation can maintain genetic polymorphism and generate geographic patterns of local host or parasite adaptation. Fixation of all-resistant (or all-infective) genotypes is further prevented if adaptation trades off with other host (or parasite) life-history traits. For the host, such indirect costs of resistance refer to reduced fitness of resistant genotypes in the absence of parasites. We studied (co)evolution in experimental microcosms of several clones of the freshwater protozoan Paramecium caudatum, infected with the bacterial parasite Holospora undulata. After two and a half years of culture, inoculation of evolved and naive (never exposed to the parasite) hosts with evolved and founder parasites revealed an increase in host resistance, but not in parasite infectivity. A cross-infection experiment showed significant host clone-by-parasite isolate interactions, and evolved hosts tended to be more resistant to their own (local) parasites than to parasites from other hosts. Compared to naive clones, evolved host clones had lower division rates in the absence of the parasite. Thus, our study indicates de novo evolution of host resistance, associated with both direct and indirect costs. This illustrates how interactions with parasites can lead to the genetic divergence of initially identical populations.


Assuntos
Evolução Molecular Direcionada/métodos , Holosporaceae/fisiologia , Paramecium caudatum/microbiologia , Paramecium caudatum/fisiologia , Animais , Variação Genética , Genótipo , Holosporaceae/genética , Interações Hospedeiro-Parasita , Paramecium caudatum/genética , Seleção Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA