Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
IEEE Trans Neural Netw Learn Syst ; 33(5): 1959-1973, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34495850

RESUMO

Neuromorphic systems are a viable alternative to conventional systems for real-time tasks with constrained resources. Their low power consumption, compact hardware realization, and low-latency response characteristics are the key ingredients of such systems. Furthermore, the event-based signal processing approach can be exploited for reducing the computational load and avoiding data loss due to its inherently sparse representation of sensed data and adaptive sampling time. In event-based systems, the information is commonly coded by the number of spikes within a specific temporal window. However, the temporal information of event-based signals can be difficult to extract when using rate coding. In this work, we present a novel digital implementation of the model, called time difference encoder (TDE), for temporal encoding on event-based signals, which translates the time difference between two consecutive input events into a burst of output events. The number of output events along with the time between them encodes the temporal information. The proposed model has been implemented as a digital circuit with a configurable time constant, allowing it to be used in a wide range of sensing tasks that require the encoding of the time difference between events, such as optical flow-based obstacle avoidance, sound source localization, and gas source localization. This proposed bioinspired model offers an alternative to the Jeffress model for the interaural time difference estimation, which is validated in this work with a sound source lateralization proof-of-concept system. The model was simulated and implemented on a field-programmable gate array (FPGA), requiring 122 slice registers of hardware resources and less than 1 mW of power consumption.


Assuntos
Redes Neurais de Computação , Neurônios , Computadores , Neurônios/fisiologia , Processamento de Sinais Assistido por Computador
2.
Sensors (Basel) ; 21(9)2021 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-33922753

RESUMO

Monitoring animals' behavior living in wild or semi-wild environments is a very interesting subject for biologists who work with them. The difficulty and cost of implanting electronic devices in this kind of animals suggest that these devices must be robust and have low power consumption to increase their battery life as much as possible. Designing a custom smart device that can detect multiple animal behaviors and that meets the mentioned restrictions presents a major challenge that is addressed in this work. We propose an edge-computing solution, which embeds an ANN in a microcontroller that collects data from an IMU sensor to detect three different horse gaits. All the computation is performed in the microcontroller to reduce the amount of data transmitted via wireless radio, since sending information is one of the most power-consuming tasks in this type of devices. Multiples ANNs were implemented and deployed in different microcontroller architectures in order to find the best balance between energy consumption and computing performance. The results show that the embedded networks obtain up to 97.96% ± 1.42% accuracy, achieving an energy efficiency of 450 Mops/s/watt.


Assuntos
Algoritmos , Animais Selvagens , Animais , Comportamento Animal , Fontes de Energia Elétrica , Redes Neurais de Computação
3.
Sensors (Basel) ; 21(4)2021 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-33562753

RESUMO

Prostate cancer (PCa) is the second most frequently diagnosed cancer among men worldwide, with almost 1.3 million new cases and 360,000 deaths in 2018. As it has been estimated, its mortality will double by 2040, mostly in countries with limited resources. These numbers suggest that recent trends in deep learning-based computer-aided diagnosis could play an important role, serving as screening methods for PCa detection. These algorithms have already been used with histopathological images in many works, in which authors tend to focus on achieving high accuracy results for classifying between malignant and normal cases. These results are commonly obtained by training very deep and complex convolutional neural networks, which require high computing power and resources not only in this process, but also in the inference step. As the number of cases rises in regions with limited resources, reducing prediction time becomes more important. In this work, we measured the performance of current state-of-the-art models for PCa detection with a novel benchmark and compared the results with PROMETEO, a custom architecture that we proposed. The results of the comprehensive comparison show that using dedicated models for specific applications could be of great importance in the future.


Assuntos
Aprendizado Profundo , Detecção Precoce de Câncer , Neoplasias da Próstata , Algoritmos , Humanos , Masculino , Redes Neurais de Computação , Antígeno Prostático Específico , Neoplasias da Próstata/diagnóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA