Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Immunol ; 212(12): 1922-1931, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38683124

RESUMO

Although high titers of neutralizing Abs in human serum are associated with protection from reinfection by SARS-CoV-2, there is considerable heterogeneity in human serum-neutralizing Abs against SARS-CoV-2 during convalescence between individuals. Standard human serum live virus neutralization assays require inactivation of serum/plasma prior to testing. In this study, we report that the SARS-CoV-2 neutralization titers of human convalescent sera were relatively consistent across all disease states except for severe COVID-19, which yielded significantly higher neutralization titers. Furthermore, we show that heat inactivation of human serum significantly lowered neutralization activity in a live virus SARS-CoV-2 neutralization assay. Heat inactivation of human convalescent serum was shown to inactivate complement proteins, and the contribution of complement in SARS-CoV-2 neutralization was often >50% of the neutralizing activity of human sera without heat inactivation and could account for neutralizing activity when standard titers were zero after heat inactivation. This effect was also observed in COVID-19 vaccinees and could be abolished in individuals who were undergoing treatment with therapeutic anti-complement Abs. Complement activity was mainly dependent on the classical pathway with little contributions from mannose-binding lectin and alternative pathways. Our study demonstrates the importance of the complement pathway in significantly increasing viral neutralization activity against SARS-CoV-2 in spike seropositive individuals.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , Vacinas contra COVID-19 , COVID-19 , Via Clássica do Complemento , Testes de Neutralização , SARS-CoV-2 , Humanos , SARS-CoV-2/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/sangue , COVID-19/imunologia , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/sangue , Via Clássica do Complemento/imunologia , Vacinas contra COVID-19/imunologia , Masculino , Feminino , Pessoa de Meia-Idade , Adulto , Convalescença , Idoso , Proteínas do Sistema Complemento/imunologia
2.
J Immunol ; 211(6): 981-993, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37493438

RESUMO

Current vaccine efforts to combat SARS-CoV-2 are focused on the whole spike protein administered as mRNA, viral vector, or protein subunit. However, the SARS-CoV-2 receptor-binding domain (RBD) is the immunodominant portion of the spike protein, accounting for 90% of serum neutralizing activity. In this study, we constructed several versions of RBD and together with aluminum hydroxide or DDA (dimethyldioctadecylammonium bromide)/TDB (d-(+)-trehalose 6,6'-dibehenate) adjuvant evaluated immunogenicity in mice. We generated human angiotensin-converting enzyme 2 knock-in mice to evaluate vaccine efficacy in vivo following viral challenge. We found that 1) subdomain (SD)1 was essential for the RBD to elicit maximal immunogenicity; 2) RBDSD1 produced in mammalian HEK cells elicited better immunogenicity than did protein produced in insect or yeast cells; 3) RBDSD1 combined with the CD4 Th1 adjuvant DDA/TDB produced higher neutralizing Ab responses and stronger CD4 T cell responses than did aluminum hydroxide; 4) addition of monomeric human Fc receptor to RBDSD1 (RBDSD1Fc) significantly enhanced immunogenicity and neutralizing Ab titers; 5) the Beta version of RBDSD1Fc provided a broad range of cross-neutralization to multiple antigenic variants of concern, including Omicron; and 6) the Beta version of RBDSD1Fc with DDA/TDB provided complete protection against virus challenge in the knock-in mouse model. Thus, we have identified an optimized RBD-based subunit vaccine suitable for clinical trials.


Assuntos
COVID-19 , Vacinas Virais , Humanos , Animais , Camundongos , SARS-CoV-2 , Vacinas contra COVID-19 , Hidróxido de Alumínio , Glicoproteína da Espícula de Coronavírus , Vacinas de Subunidades Antigênicas , Anticorpos Antivirais , Anticorpos Neutralizantes , Mamíferos
3.
Heliyon ; 9(1): e12744, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36597481

RESUMO

SARS-CoV-2 depends on host cell components for infection and replication. Identification of virus-host dependencies offers an effective way to elucidate mechanisms involved in viral infection and replication. If druggable, host factor dependencies may present an attractive strategy for anti-viral therapy. In this study, we performed genome wide CRISPR knockout screens in Vero E6 cells and four human cell lines including Calu-3, UM-UC-4, HEK-293 and HuH-7 to identify genetic regulators of SARS-CoV-2 infection. Our findings identified only ACE2, the cognate SARS-CoV-2 entry receptor, as a common host dependency factor across all cell lines, while other host genes identified were largely cell line specific, including known factors TMPRSS2 and CTSL. Several of the discovered host-dependency factors converged on pathways involved in cell signalling, immune-related pathways, and chromatin modification. Notably, the chromatin modifier gene KMT2C in Calu-3 cells had the strongest impact in preventing SARS-CoV-2 infection when perturbed.

4.
Retrovirology ; 19(1): 18, 2022 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-35986377

RESUMO

BACKGROUND: The generation of over 69 spliced HIV-1 mRNAs from one primary transcript by alternative RNA splicing emphasizes the central role that RNA processing plays in HIV-1 replication. Control is mediated in part through the action of host SR proteins whose activity is regulated by multiple SR kinases (CLK1-4, SRPKs). METHODS: Both shRNA depletion and small molecule inhibitors of host SR kinases were used in T cell lines and primary cells to evaluate the role of these factors in the regulation of HIV-1 gene expression. Effects on virus expression were assessed using western blotting, RT-qPCR, and immunofluorescence. RESULTS: The studies demonstrate that SR kinases play distinct roles; depletion of CLK1 enhanced HIV-1 gene expression, reduction of CLK2 or SRPK1 suppressed it, whereas CLK3 depletion had a modest impact. The opposing effects of CLK1 vs. CLK2 depletion were due to action at distinct steps; reduction of CLK1 increased HIV-1 promoter activity while depletion of CLK2 affected steps after transcript initiation. Reduced CLK1 expression also enhanced the response to several latency reversing agents, in part, by increasing the frequency of responding cells, consistent with a role in regulating provirus latency. To determine whether small molecule modulation of SR kinase function could be used to control HIV-1 replication, we screened a GSK library of protein kinase inhibitors (PKIS) and identified several pyrazolo[1,5-b] pyridazine derivatives that suppress HIV-1 gene expression/replication with an EC50 ~ 50 nM. The compounds suppressed HIV-1 protein and viral RNA accumulation with minimal impact on cell viability, inhibiting CLK1 and CLK2 but not CLK3 function, thereby selectively altering the abundance of individual CLK and SR proteins in cells. CONCLUSIONS: These findings demonstrate the unique roles played by individual SR kinases in regulating HIV-1 gene expression, validating the targeting of these functions to either enhance latency reversal, essential for "Kick-and-Kill" strategies, or to silence HIV protein expression for "Block-and-Lock" strategies.


Identifying cellular factors that regulate HIV-1 RNA processing provides important insights into novel strategies to control this infection. Different members of the SR kinase family have distinct roles in regulating virus expression because they affect distinct steps of transcription/RNA processing. We identify inhibitors of these kinases that suppress HIV-1 gene expression and replication in multiple assay systems at nanomolar concentrations with limited or no cytotoxicity. Our results highlight the therapeutic potential of targeting the post-integration stage of the HIV-1 lifecycle to selectively enhance or reverse provirus latency. A greater understanding of the molecular mechanisms underlying the effects observed will facilitate the development of more targeted approaches to modulate HIV-1 latency on the path toward a "functional" cure for this infection.


Assuntos
HIV-1 , Processamento Alternativo , Expressão Gênica , HIV-1/fisiologia , Inibidores de Proteínas Quinases/farmacologia , RNA Viral/genética , Latência Viral
5.
Singapore Med J ; 2021 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-34600447

RESUMO

INTRODUCTION: This study aims to determine the diagnostic value of IL-6, IL-8, IL-17, TNF-α and D-lactate levels in the cerebrospinal fluid (CSF) in nosocomial meningitis. METHODS: CSF levels of cytokines and D-lactate were compared across 29 episodes who were diagnosed with nosocomial meningitis, 38 episodes with pleocytosis but without meningitis and 54 control subjects. RESULTS: CSF levels of IL-6, IL-8, and D-lactate were higher in the group with nosocomial meningitis compared to the control group and to the group with pleocytosis without meningitis (p<0.05). For the levels of IL-6, when the threshold was considered to be > 440 pg/mL, the sensitivity and specificity were 55.17% and 94.74%, respectively. For IL-8 levels, when the threshold was considered to be >1249 pg/mL, the sensitivity and specificity were 44.83% and 84.21%, respectively. In the patients with nosocomial meningitis, when the threshold of D-lactate levels was considered to be >1.05µmol/mL, the sensitivity and specificity were found to be 75.86% and 63.16%, respectively. In the pleocytosis without meningitis CSF samples and in the CSF samples diagnosed with nosocomial meningitis, the highest AUC was calculated for triple combination model of IL-6, IL-8, and D-lactate levels (AUC= 0.801, p<0.001), and double combination model IL-6 and IL-8 (AUC= 0.790) (p<0.001). CONCLUSION: In our study, we have concluded that IL-6, IL-8 and D-lactate levels could be diagnostic markers for nosocomial meningitis.

6.
Am J Infect Control ; 49(10): 1227-1231, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34320409

RESUMO

BACKGROUND: The COVID-19 pandemic highlighted the need for evidence-based approaches to decontamination and reuse of N95 filtering facepiece respirators (FFRs). We sought to determine whether vapourized hydrogen peroxide (VHP) reduced SARS-CoV-2 bioburden on FFRs without compromising filtration efficiency. We also investigated coronavirus HCoV-229E as a surrogate for decontamination validation testing. METHODS: N95 FFRs were laced with SARS-CoV-2 or HCoV-229E and treated with VHP in a hospital reprocessing facility. After sterilization, viral burden was determined using viral outgrowth in a titration assay, and filtration efficiency of FFRs was tested against ATSM F2299 and NIOSH TEB-STP-APR-0059. RESULTS: Viable SARS-CoV-2 virus was not detected after VHP treatment. One replicate of the HCoV-229E laced FFRs yielded virus after processing. Unexpired N95 FFRs retained full filtration efficiency after VHP processing. Expired FFRs failed to meet design-specified filtration efficiency and therefore are unsuitable for reprocessing. DISCUSSION: In-hospital VHP is an effective decontaminant for SARS-CoV-2 on FFRs. Further, filtration efficiency of unexpired respirators is not affected by this decontamination process. CONCLUSIONS: VHP is effective in inactivating SARS-CoV-2 on FFRs without compromising filtration efficiency. HCoV-229E is a suitable surrogate for SARS-CoV-2 for disinfection studies.


Assuntos
COVID-19 , Coronavirus Humano 229E , Descontaminação , Desinfecção , Reutilização de Equipamento , Hospitais , Humanos , Peróxido de Hidrogênio/farmacologia , Respiradores N95 , Pandemias , SARS-CoV-2
7.
Nat Commun ; 12(1): 3661, 2021 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-34135340

RESUMO

SARS-CoV-2, the virus responsible for COVID-19, has caused a global pandemic. Antibodies can be powerful biotherapeutics to fight viral infections. Here, we use the human apoferritin protomer as a modular subunit to drive oligomerization of antibody fragments and transform antibodies targeting SARS-CoV-2 into exceptionally potent neutralizers. Using this platform, half-maximal inhibitory concentration (IC50) values as low as 9 × 10-14 M are achieved as a result of up to 10,000-fold potency enhancements compared to corresponding IgGs. Combination of three different antibody specificities and the fragment crystallizable (Fc) domain on a single multivalent molecule conferred the ability to overcome viral sequence variability together with outstanding potency and IgG-like bioavailability. The MULTi-specific, multi-Affinity antiBODY (Multabody or MB) platform thus uniquely leverages binding avidity together with multi-specificity to deliver ultrapotent and broad neutralizers against SARS-CoV-2. The modularity of the platform also makes it relevant for rapid evaluation against other infectious diseases of global health importance. Neutralizing antibodies are a promising therapeutic for SARS-CoV-2.


Assuntos
Anticorpos Monoclonais/farmacologia , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/química , SARS-CoV-2/imunologia , Animais , Anticorpos Monoclonais/química , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/química , Anticorpos Antivirais/imunologia , Especificidade de Anticorpos , Apoferritinas/química , Disponibilidade Biológica , Mapeamento de Epitopos , Humanos , Imunoglobulina G/imunologia , Masculino , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Engenharia de Proteínas/métodos , Subunidades Proteicas/química , Glicoproteína da Espícula de Coronavírus/imunologia , Distribuição Tecidual
8.
CMAJ ; 192(48): E1657-E1661, 2020 Nov 30.
Artigo em Francês | MEDLINE | ID: mdl-33257336

RESUMO

CONTEXTE: Le recours aux dons de lait maternel pasteurisé est la norme de soins dans les hôpitaux pour les nourrissons ayant un très faible poids à la naissance, afin de faire le pont en attendant que les mères puissent allaiter leur enfant. Le but de cette étude était de vérifier si la pasteurisation à l'aide de la méthode de Holder (à 62,5 °C pendant 30 min) serait suffisante pour inactiver le coronavirus du syndrome respiratoire aigu sévère 2 (SRAS-CoV-2) dans des échantillons de lait maternel provenant de donneuses. MÉTHODES: Nous avons inoculé avec le SRAS-CoV-2 des échantillons de lait congelés provenant de 10 donneuses de la Rogers Hixon Ontario Human Milk Bank (la banque de lait maternel de l'Ontario) pour atteindre une concentration finale de 1 × 107 DICT50/mL (50 % de la dose infectante de la culture de tissus par mL). Les échantillons ont été pasteurisés à l'aide de la méthode de Holder ou laissés à la température du laboratoire pendant 30 minutes, puis nous avons mis en culture des dilutions en série sur des cellules Vero E6 durant 5 jours. Nous avons utilisé des échantillons témoins dans cette étude, soit des échantillons de lait provenant des mêmes donneuses, auxquels le virus n'a pas été ajouté (échantillons pasteurisés et non pasteurisés), de même que des réplicats de cellules Vero E6 directement inoculées avec le SRAS-CoV-2. Nous rapportons ici les effets cytopathologiques en DICT50/mL. RÉSULTATS: Nous n'avons détecté aucune activité cytopathologique dans l'ensemble des échantillons de lait contenant le SRAS-CoV-2 pasteurisés à l'aide de la méthode de Holder. Dans les échantillons contenant le SRASCoV-2 qui n'ont pas été pasteurisés, mais plutôt laissés à la température du laboratoire pendant 30 minutes, nous avons observé une réduction du titre infectieux d'environ 1 log. INTERPRÉTATION: La pasteurisation du lait maternel à l'aide de la méthode de Holder (à 62,5 °C pendant 30 min) inactive le SRAS-CoV-2. Ainsi, si du lait maternel provenant de donneuses contenait le virus à la suite d'une transmission par la glande mammaire ou d'une contamination, cette méthode de pasteurisation rendrait le lait sans danger pour la consommation par le nourrisson et la manipulation par les travailleurs de la santé.

9.
Sci Immunol ; 5(52)2020 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-33033173

RESUMO

While the antibody response to SARS-CoV-2 has been extensively studied in blood, relatively little is known about the antibody response in saliva and its relationship to systemic antibody levels. Here, we profiled by enzyme-linked immunosorbent assays (ELISAs) IgG, IgA and IgM responses to the SARS-CoV-2 spike protein (full length trimer) and its receptor-binding domain (RBD) in serum and saliva of acute and convalescent patients with laboratory-diagnosed COVID-19 ranging from 3-115 days post-symptom onset (PSO), compared to negative controls. Anti-SARS-CoV-2 antibody responses were readily detected in serum and saliva, with peak IgG levels attained by 16-30 days PSO. Longitudinal analysis revealed that anti-SARS-CoV-2 IgA and IgM antibodies rapidly decayed, while IgG antibodies remained relatively stable up to 105 days PSO in both biofluids. Lastly, IgG, IgM and to a lesser extent IgA responses to spike and RBD in the serum positively correlated with matched saliva samples. This study confirms that serum and saliva IgG antibodies to SARS-CoV-2 are maintained in the majority of COVID-19 patients for at least 3 months PSO. IgG responses in saliva may serve as a surrogate measure of systemic immunity to SARS-CoV-2 based on their correlation with serum IgG responses.


Assuntos
Anticorpos Antivirais/sangue , Antígenos Virais/imunologia , Betacoronavirus/imunologia , Infecções por Coronavirus/imunologia , Pneumonia Viral/imunologia , Saliva/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Adulto , COVID-19 , Infecções por Coronavirus/virologia , Estudos Transversais , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Imunoglobulina A/sangue , Imunoglobulina A/imunologia , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Imunoglobulina M/sangue , Imunoglobulina M/imunologia , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Pandemias , Pneumonia Viral/virologia , SARS-CoV-2
10.
CMAJ ; 192(31): E871-E874, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32646870

RESUMO

BACKGROUND: Provision of pasteurized donor human milk, as a bridge to mother's own milk, is the standard of care for very low-birth-weight infants in hospital. The aim of this research was to confirm that Holder pasteurization (62.5°C for 30 min) would be sufficient to inactivate severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in donated human milk samples. METHODS: We spiked frozen milk samples from 10 donors to the Rogers Hixon Ontario Human Milk Bank with SARS-CoV-2 to achieve a final concentration of 1 × 107 TCID50/mL (50% of the tissue culture infectivity dose per mL). We pasteurized samples using the Holder method or held them at room temperature for 30 minutes and plated serial dilutions on Vero E6 cells for 5 days. We included comparative controls in the study using milk samples from the same donors without addition of virus (pasteurized and unpasteurized) as well as replicates of Vero E6 cells directly inoculated with SARS-CoV-2. We reported cytopathic effects as TCID50/mL. RESULTS: We detected no cytopathic activity in any of the SARS-CoV-2-spiked milk samples that had been pasteurized using the Holder method. In the SARS-CoV-2-spiked milk samples that were not pasteurized but were kept at room temperature for 30 minutes, we observed a reduction in infectious viral titre of about 1 log. INTERPRETATION: Pasteurization of human milk by the Holder method (62.5°C for 30 min) inactivates SARS-CoV-2. Thus, in the event that donated human milk contains SARS-CoV-2 by transmission through the mammary gland or by contamination, this method of pasteurization renders milk safe for consumption and handling by care providers.


Assuntos
Betacoronavirus/crescimento & desenvolvimento , Infecções por Coronavirus/prevenção & controle , Bancos de Leite Humano , Leite Humano/virologia , Pandemias/prevenção & controle , Pasteurização/métodos , Pneumonia Viral/prevenção & controle , Inativação de Vírus , COVID-19 , Temperatura Alta , Humanos , Leite Humano/química , Ontário , SARS-CoV-2 , Fatores de Tempo , Ensaio de Placa Viral
11.
Front Microbiol ; 11: 1299, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32582133

RESUMO

While the global incidence of human immunodeficiency virus (HIV-1) remains well above UNAIDS targets, sexual transmission HIV is surprisingly inefficient. A variety of host, viral and environmental factors can either increase HIV-1 shedding in the infected partner and/or increase mucosal susceptibility of the HIV-1 uninfected partner. Clinical and epidemiological studies have clearly established that Neisseria gonorrhoeae substantially enhances HIV-1 transmission, despite it not being an ulcerative infection. This review will consider findings from molecular, immunologic and clinical studies that have focused on each of these two human-restricted pathogens, in order to develop an integrative model that describes how gonococci can both increase mucosal shedding of HIV-1 from a co-infected person and facilitate virus establishment in a susceptible host.

12.
Blood Transfus ; 16(3): 262-272, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-28488961

RESUMO

BACKGROUND: The aim of this study was to investigate the immunological alterations that occur during the storage of erythrocyte suspensions which may lead to transfusion-related immunomodulation following allogeneic blood transfusion. MATERIALS AND METHODS: One part of the erythrocyte suspensions obtained from donors was leucoreduced while the other part was not. The leucoreduced (LR) and non-leucoreduced (NL) erythrocyte suspensions were then further divided into three equal amounts which were stored for 0, 21 or 42 days prior to measurements, by enzyme-linked immunosorbent assays, of cytokine levels in their supernatants. T-helper (Th) lymphocyte subgroups and gene expression were analysed in the NL erythrocyte suspensions by flow cytometry and real-time polymerase chain reaction, respectively. Results were compared to those of storage day 0. RESULTS: By day 21, the number of Th2 cells had increased significantly and the numbers of Th1, Th22 and Treg cells had decreased significantly in the NL erythrocyte suspensions. On day 42 the numbers of Th2 and Treg cells in the NL suspensions were significantly increased while the number of Th1 cells was significantly decreased. The levels of transcription factors (TBX21, GATA3, and SPI.1) were significantly decreased on days 21 and 42, and AHR, FOXP3 and RORC2 levels were significantly increased on day 42 in NL erythrocyte suspensions. The decrease in interleukin-22 and increase in transforming growth factor-ß levels found in NL erythrocyte suspensions on day 21 were statistically significant. Elevated levels of interleukin-17A were found in both LR and NL erythrocyte suspensions on day 42. DISCUSSION: Our results suggest that allogeneic leucocytes and cytokines may play significant roles in the development of transfusion-related immunomodulation.


Assuntos
Antígenos de Diferenciação/imunologia , Preservação de Sangue , Eritrócitos/imunologia , Interleucinas/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Eritrócitos/citologia , Feminino , Humanos , Masculino , Linfócitos T Auxiliares-Indutores/citologia , Interleucina 22
13.
PLoS One ; 11(11): e0165138, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27824867

RESUMO

Although our knowledge about Brucella virulence factors and the host response increase rapidly, the mechanisms of immune evasion by the pathogen and causes of chronic disease are still unknown. Here, we aimed to investigate the immunological factors which belong to CD8+ T cells and their roles in the transition of brucellosis from acute to chronic infection. Using miRNA microarray, more than 2000 miRNAs were screened in CD8+ T cells of patients with acute or chronic brucellosis and healthy controls that were sorted from peripheral blood with flow cytometry and validated through qRT-PCR. Findings were evaluated using GeneSpring GX (Agilent) 13.0 software and KEGG pathway analysis. Expression of two miRNAs were determined to display a significant fold change in chronic group when compared with acute or control groups. Both miRNAs (miR-126-5p and miR-4753-3p) were decreased (p <0.05 or fold change > 2). These miRNAs have the potential to be the regulators of CD8+ T cell-related marker genes for chronic brucellosis infections. The differentially expressed miRNAs and their predicted target genes are involved in MAPK signaling pathway, cytokine-cytokine receptor interactions, endocytosis, regulation of actin cytoskeleton, and focal adhesion indicating their potential roles in chronic brucellosis and its progression. It is the first study of miRNA expression analysis of human CD8+ T cells to clarify the mechanism of inveteracy in brucellosis.


Assuntos
Brucelose/metabolismo , Linfócitos T CD8-Positivos/metabolismo , MicroRNAs/metabolismo , Doença Aguda , Adulto , Doença Crônica , Progressão da Doença , Feminino , Perfilação da Expressão Gênica/métodos , Interações Hospedeiro-Patógeno/fisiologia , Humanos , Evasão da Resposta Imune/fisiologia , Masculino , Pessoa de Meia-Idade , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA