Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Pharmaceutics ; 16(1)2023 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-38258069

RESUMO

Transdermal drug delivery systems offer several advantages over conventional oral or hypodermic administration due to the avoidance of first-pass drug metabolism and gastrointestinal degradation as well as patients' convenience due to a minimally invasive and painless approach. A novel transdermal drug delivery system, comprising a combination of transfersomes with either solid silicon or solid polycarbonate microneedles has been developed for the transdermal delivery of aspirin. Aspirin was encapsulated inside transfersomes using a "thin-film hydration sonication" technique, yielding an encapsulation efficiency of approximately 67.5%. The fabricated transfersomes have been optimised and fully characterised in terms of average size distribution and uniformity, surface charge and stability (shelf-life). Transdermal delivery, enhanced by microneedle penetration, allows the superior permeation of transfersomes into perforated porcine skin and has been extensively characterised using optical coherence tomography (OCT) and transmission electron microscopy (TEM). In vitro permeation studies revealed that transfersomes enhanced the permeability of aspirin by more than four times in comparison to the delivery of unencapsulated "free" aspirin. The microneedle-assisted delivery of transfersomes encapsulating aspirin yielded 13-fold and 10-fold increases in permeation using silicon and polycarbonate microneedles, respectively, in comparison with delivery using only transfersomes. The cytotoxicity of different dose regimens of transfersomes encapsulating aspirin showed that encapsulated aspirin became cytotoxic at concentrations of ≥100 µg/mL. The results presented demonstrate that the transfersomes could resolve the solubility issues of low-water-soluble drugs and enable their slow and controlled release. Microneedles enhance the delivery of transfersomes into deeper skin layers, providing a very effective system for the systemic delivery of drugs. This combined drug delivery system can potentially be utilised for numerous drug treatments.

2.
Eur J Pharm Biopharm ; 171: 19-28, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34144128

RESUMO

The fabrication of silicon in-plane microneedle arrays from a simple single wet etch step is presented. The characteristic 54.7° sidewall etch angle obtained via KOH etching of (100) orientation silicon wafers has been used to create a novel microneedle design. The KOH simultaneously etches both the front and back sides of the wafer to produce V shaped grooves, that intersect to form a sharp pyramidal six-sided microneedle tip. This method allows fabrication of solid microneedles with different geometries to determine the optimal microneedle length and width for effective penetration and minimally invasive drug delivery. A modified grooved microneedle design can also be used to create a hollow microneedle, via bonding of two grooved microneedles together, creating an enclosed hollow channel. The microneedle arrays developed, effectively penetrate the skin without significant indentation, thereby enabling effective delivery of active ingredients via either a poke and patch application using solid microneedles or direct injection using hollow microneedles. This simple, scalable and cost effective method utilises KOH to etch the silicon wafer in-plane, allowing microneedles with variable length of several mm to be fabricated, as opposed to out-of-plane MNs, which are geometrically restricted to dimensions less than the thickness of the wafer. These microneedle arrays have been used to demonstrate effective delivery of insulin and hyaluronic acid into the skin.


Assuntos
Ácido Hialurônico/farmacocinética , Insulina/farmacocinética , Microinjeções/instrumentação , Agulhas , Silício/química , Administração Cutânea , Sistemas de Liberação de Medicamentos , Desenho de Equipamento , Humanos , Ácido Hialurônico/administração & dosagem , Insulina/administração & dosagem
3.
J Chem Phys ; 155(17): 174703, 2021 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-34742208

RESUMO

Graphene is an ideal material for biosensors due to the large surface area for multiple bonding sites, the high electrical conductivity allowing for high sensitivity, and the high tensile strength providing durability in fabricated sensor devices. For graphene to be successful as a biosensing platform, selectivity must be achieved through functionalization with specific chemical groups. However, the device performance and sensor sensitivity must still be maintained after functionalization, which can be challenging. We compare phenyl amine and 1,5-diaminonaphthalene functionalization methods for chemical vapor deposition grown graphene, both used to obtain graphene modified with amine groups-which is required for surface attachment of highly selective antibody bio-receptors. Through atomic force microscopy (AFM), Raman spectroscopy, and time-of-flight secondary ion mass spectrometry imaging of co-located areas, the chemistry, thickness, and coverage of the functional groups bound to the graphene surface have been comprehensively analyzed. We demonstrate the modification of functionalized graphene using AFM, which unexpectedly suggests the removal of covalently bonded functional groups, resulting in a "recovered" graphene structure with reduced disorder, confirmed with Raman spectroscopy. This removal explains the decrease in the ID/IG ratio observed in Raman spectra from other studies on functionalized graphene after mechanical strain or a chemical reaction and reveals the possibility of reverting to the non-functionalized graphene structure. Through this study, preferred functionalization processes are recommended to maintain the performance properties of graphene as a biosensor.


Assuntos
Técnicas Biossensoriais , Grafite/química , Compostos Orgânicos/química , Aminas/química , Condutividade Elétrica , Microscopia de Força Atômica
4.
Nanoscale Adv ; 3(8): 2295-2304, 2021 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-36133757

RESUMO

An immunosensor capable of high sensitivity detection of beta-amyloid peptides, shown to be a reliable biomarker for Alzheimer's disease, has been developed using screen printed graphene electrodes (SPGEs) modified with ultra-thin layers of polymerised 1,5-diaminonaphthalene (pDAN). Electropolymerization of 1,5-diaminonaphthalene (DAN) was performed to coat the graphene screen printed electrodes in a continuous polymer layer with controlled thickness. The surface characteristics of pristine graphene and polymer modified graphene electrodes were examined using Raman and X-ray photoelectron spectroscopy. The effects of polymer thickness on the electron transfer rates were investigated. An immunosensor for selective detection of beta amyloid peptides Aß(1-42) was developed via biofunctionalization of the pDAN modified SPGE with the anti-beta amyloid antibody used as the peptide bioreceptor. The immunosensor has been used for specific detection of Aß(1-42) with a linear range of 1 pg mL-1 to 1000 pg mL-1 and showed 1.4 pg mL-1 and 4.25 pg mL-1 detection and quantification limit, respectively. The biosensor was further validated for the analysis of spiked human plasma. The immunosensor enables rapid, accurate, precise, reproducible and highly sensitive detection of Aß(1-42) using a low-cost SPGE platform, which opens the possibilities for diagnostic ex vivo applications and research-based real time studies.

5.
Pharmaceutics ; 12(12)2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-33333795

RESUMO

Polymer-based solid microstructures (MSts) have the potential to significantly increase the quantity and range of drugs that can be administered across the skin. MSt arrays are used to demonstrate their capacity to bypass the skin barrier and enhance permeability by creating microchannels through the stratum corneum, in a minimally invasive manner. This study is designed to demonstrate the ability of MSts to exceed the current boundaries for transdermal delivery of compounds with different molecular weights, partition coefficients, acid dissociation constants, melting points, and water solubilities. In vitro permeation of a range of selected molecules, including acetyl salicylic acid (aspirin), galantamine, selegiline hydrochloride (Sel-HCl), insulin, caffeine, hydrocortisone (HC), hydrocortisone 21-hemisuccinate sodium salt (HC-HS) and bovine serum albumin (BSA) has been studied across excised porcine skin with and without poke and patch application of MSts. Permeation of the molecules was monitored using Franz diffusion cells over 24 h. MSts significantly increased the permeation of all selected molecules up to 40 times, compared to topical applications of the molecules without MSts. The greatest increase in permeation was observed for caffeine with 70 ± 8% permeation and the lowest enhancement was observed for HC with a 2.4 ± 1.3% increase in permeation. The highest obtained flux was BSA (8133 ± 1365 µg/cm2/h) and the lowest flux observed for HC (11 ± 4 µg/cm2/h). BSA and HC also showed the highest (16,275 ± 3078 µg) and the lowest (73 ± 47 µg) permeation amount after 24 h respectively. MSt-treated skin exhibits greatly increased permeation. The molecule parameters (size, acid dissociation constant, partition coefficient and solubility)-traditional hurdles associated with passive diffusion through intact skin-are overcome using MSt skin treatment.

6.
Nanomaterials (Basel) ; 10(9)2020 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-32927839

RESUMO

Affinity biosensors based on graphene field-effect transistor (GFET) or resistor designs require the utilization of graphene's exceptional electrical properties. Therefore, it is critical when designing these sensors, that the electrical properties of graphene are maintained throughout the functionalization process. To that end, non-covalent functionalization may be preferred over covalent modification. Drop-cast 1,5-diaminonaphthalene (DAN) was investigated as a quick and simple method for the non-covalent amine functionalization of carbon-based surfaces such as graphene, for use in biosensor development. In this work, multiple graphene surfaces were functionalized with DAN via a drop-cast method, leading to amine moieties, available for subsequent attachment to receptor molecules. Successful modification of graphene with DAN via a drop-cast method was confirmed using X-ray photoelectron spectroscopy (XPS), Raman spectroscopy and real-time resistance measurements. Successful attachment of receptor molecules also confirmed using the aforementioned techniques. Furthermore, an investigation into the effect of sequential wash steps which are required in biosensor manufacture, on the presence of the DAN layer, confirmed that the functional layer was not removed, even after multiple solvent exposures. Drop-cast DAN is thus, a viable fast and robust method for the amine functionalization of graphene surfaces for use in biosensor development.

7.
Lab Chip ; 20(15): 2788-2795, 2020 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-32632424

RESUMO

A novel production process flow is presented here for the manufacture of hollow silicon microneedles using deep reactive-ion etching (DRIE) technology. The patent-pending three-step process flow has been developed to produce multiple arrays of sharp-tipped, hollow microneedles, which facilitate easy insertion and controlled fluid injection into excised skin samples. A bevelled tip and vertical sidewalls for the microneedle have been achieved with good uniformity, despite >45% open etch area. Processing steps and etch challenges are discussed, and preliminary skin testing results are presented, showing effective needle insertion and delivery of fluorescent dye into ex vivo skin from human breast tissue.


Assuntos
Sistemas de Liberação de Medicamentos , Microinjeções , Preparações Farmacêuticas , Silício , Administração Cutânea , Humanos , Agulhas , Plasma , Tecnologia
8.
Phys Chem Chem Phys ; 21(33): 18161-18169, 2019 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-31389445

RESUMO

Graphene has many superlative thermal, electrical and mechanical properties. However, the thermoelectric performance of graphene is limited by its high thermal conductivity and small Seebeck coefficient. To address this problem, monolayer and bilayer MoSSe nanoribbons together with graphene/MoSSe heterostructures have been investigated in this work. The electron and phonon transport, and the thermoelectric properties of the monolayer and bilayer MoSSe nanoribbons, together with the graphene/MoSSe heterostructures, have been analyzed by first-principles methods in conjunction with non-equilibrium Green's function and the Landauer equation. The results indicate that figure of merit (ZT) values of 2.01 and 1.64 can be achieved for graphene/SeMoS stacked nanoribbons and symmetric armchair MoSSe nanoribbons respectively at 300 K, which are much higher than the ZT value of prime graphene (ZT ∼ 0.05). The maximum ZT values of these structures increase at T < 350 K, while the maximum ZT decreases at high temperatures (T > 350 K). However, the maximum ZT values of the symmetric armchair MoSSe nanoribbons show an increase with temperatures up to 550 K. From our analysis, phonon thermal conductivity and temperature are key factors determining the ZT values in MoSSe nanoribbons. The significantly enhanced ZT values make graphene/SeMoS stacking nanoribbons and symmetric armchair MoSSe nanoribbons promising candidates for application in thermoelectric devices.

9.
Biosensors (Basel) ; 9(1)2019 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-30669385

RESUMO

Grafting thin polymer layers on graphene enables coupling target biomolecules to graphene surfaces, especially through amide and aldehyde linkages with carboxylic acid and primary amine derivatives, respectively. However, functionalizing monolayer graphene with thin polymer layers without affecting their exceptional electrical properties remains challenging. Herein, we demonstrate the controlled modification of chemical vapor deposition (CVD) grown single layer graphene with ultrathin polymer 1,5-diaminonaphthalene (DAN) layers using the electropolymerization technique. It is observed that the controlled electropolymerization of DAN monomer offers continuous polymer layers with thickness ranging between 5⁻25 nm. The surface characteristics of pure and polymer modified graphene was examined. As anticipated, the number of surface amine groups increases with increases in the layer thickness. The effects of polymer thickness on the electron transfer rates were studied in detail and a simple route for the estimation of surface coverage of amine groups was demonstrated using the electrochemical analysis. The implications of grafting ultrathin polymer layers on graphene towards horseradish peroxidase (HRP) enzyme immobilization and enzymatic electrochemical sensing of H2O2 were discussed elaborately.


Assuntos
Técnicas Eletroquímicas/métodos , Grafite/química , Peróxido de Hidrogênio/análise , Polímeros/química , Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/instrumentação , Eletrodos , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Glucose/metabolismo , Peroxidase do Rábano Silvestre/química , Peroxidase do Rábano Silvestre/metabolismo , Propriedades de Superfície
10.
Diagnostics (Basel) ; 7(3)2017 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-28933752

RESUMO

Since the discovery of the two-dimensional (2D) carbon material, graphene, just over a decade ago, the development of graphene-based field effect transistors (G-FETs) has become a widely researched area, particularly for use in point-of-care biomedical applications. G-FETs are particularly attractive as next generation bioelectronics due to their mass-scalability and low cost of the technology's manufacture. Furthermore, G-FETs offer the potential to complete label-free, rapid, and highly sensitive analysis coupled with a high sample throughput. These properties, coupled with the potential for integration into portable instrumentation, contribute to G-FETs' suitability for point-of-care diagnostics. This review focuses on elucidating the recent developments in the field of G-FET sensors that act on a bioaffinity basis, whereby a binding event between a bioreceptor and the target analyte is transduced into an electrical signal at the G-FET surface. Recognizing and quantifying these target analytes accurately and reliably is essential in diagnosing many diseases, therefore it is vital to design the G-FET with care. Taking into account some limitations of the sensor platform, such as Debye-Hükel screening and device surface area, is fundamental in developing improved bioelectronics for applications in the clinical setting. This review highlights some efforts undertaken in facing these limitations in order to bring G-FET development for biomedical applications forward.

11.
IET Nanobiotechnol ; 7(2): 59-62, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24046906

RESUMO

Using an SPTS Technologies Ltd. Pegasus deep reactive-ion etching (DRIE) system, an advanced two-step etching process has been developed for hollow microneedles in applications of transdermal blood sampling and drug delivery. Because of the different etching requirements of both narrow deep hollow and large open cavity, hollow etch and cavity etch steps have been achieved separately. This novel two-step etching process is assisted with a bi-layer etching mask. Results show that the etch rate of silicon during this hollow etch step was about 7.5 microm/min and the etch rate of silicon during this cavity etch step was about 8-10 microm/min, using the coil plasma etching power between 2.0 and 2.8 kW. Especially for the microneedle bores etch, the deeper it etched, the slower the etch rate was. The microneedle bores have successfully been obtained 75-150 microm in inner diametre and 700-1000 microm long with high aspect ratio DRIE, meanwhile, the vertical sidewall structures have been achieved with the high etch load exposed area over 70% for the cavity etch step.


Assuntos
Coleta de Amostras Sanguíneas/instrumentação , Sistemas de Liberação de Medicamentos/instrumentação , Microinjeções/instrumentação , Microtecnologia/instrumentação , Agulhas , Engenharia Biomédica , Desenho de Equipamento , Microscopia Eletrônica de Varredura , Microtecnologia/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA