Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J R Soc Interface ; 21(214): 20240046, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38774961

RESUMO

Many microorganisms propel themselves through complex media by deforming their flagella. The beat is thought to emerge from interactions between forces of the surrounding fluid, the passive elastic response from deformations of the flagellum and active forces from internal molecular motors. The beat varies in response to changes in the fluid rheology, including elasticity, but there are limited data on how systematic changes in elasticity alter the beat. This work analyses a related problem with fixed-strength driving force: the emergence of beating of an elastic planar filament driven by a follower force at the tip of a viscoelastic fluid. This analysis examines how the onset of oscillations depends on the strength of the force and viscoelastic parameters. Compared to a Newtonian fluid, it takes more force to induce the instability in viscoelastic fluids, and the frequency of the oscillation is higher. The linear analysis predicts that the frequency increases with the fluid relaxation time. Using numerical simulations, the model predictions are compared with experimental data on frequency changes in the bi-flagellated alga Chlamydomonas reinhardtii. The model shows the same trends in response to changes in both fluid viscosity and Deborah number and thus provides a possible mechanistic understanding of the experimental observations.


Assuntos
Chlamydomonas reinhardtii , Elasticidade , Modelos Biológicos , Chlamydomonas reinhardtii/fisiologia , Viscosidade , Flagelos/fisiologia , Reologia
2.
Plant Physiol Biochem ; 210: 108587, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38636255

RESUMO

Climate change is increasing flooding in provinces of the south of the Yangtze River, posing challenges for promoting Styrax tonkinensis seedlings in these areas. To understand the physiological reasons for this species' intolerance to waterlogging, we observed biochemical parameters in one-year-old S. tonkinensis seedlings during two seasons. For 4 and 12 days in summer and winter experiments, respectively, we subjected seedlings to a pot-in-pot waterlogging treatment. Control groups were established at 0 h and 0 days. We examined indicators related to root vigor, reactive oxygen species (ROS), antioxidant enzymes, fermentative pathways, and more. The results displayed that decreased abscisic acid accumulation in roots inhibited water transport. Increased dehydrogenase and lactate dehydrogenase activity in roots promoted alcohol and lactate fermentation, causing toxic damage and reduced root vigor, impeding water absorption. In leaves, high ROS levels led to lipid peroxidation, exacerbating water loss from continuous transpiration. The high relative electric conductivity and low leaf relative water content indicated water loss, causing leaf wilting and shriveling. Conversely, winter seedlings, devoid of leaves, significantly reduced transpiration, and dormancy delayed root fermentation. With less ROS damage in roots, winter seedlings exhibited greater waterlogging tolerance. In summary, excessive water loss from leaves and inhibited vertical water transport contributed to low summer survival rates, while winter leafless dormancy and reduced ROS damage enhanced tolerance. Our findings provide insights for enhancing waterlogging resistance in S. tonkinensis amidst climate change challenges.


Assuntos
Raízes de Plantas , Espécies Reativas de Oxigênio , Plântula , Plântula/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Raízes de Plantas/metabolismo , Água/metabolismo , Estresse Fisiológico , Inundações , Folhas de Planta/metabolismo , Ácido Abscísico/metabolismo
3.
Int J Phytoremediation ; 26(6): 862-872, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37872766

RESUMO

Chile has more than 750 mine tailings across the country, mainly distributed in the northern region, which also includes a biodiversity hotspot and the driest desert in the world. So far, tailing management has included chemical and physical stabilization of tailings, exclusively. This research examined the perceived likelihood of stakeholders, namely: Academia, Industry, environmental Non-Governmental Organizations, and Government officials, in the management of tailings and explored their attitudes toward the inclusion of plants and their associated microbes, as an additional stabilization technology, through an online questionnaire (n = 43). We aimed to answer What was the perceived likelihood of stakeholders for using phytoremediation for mine-tailing management in Chile? The consensus opinion across sectors is that there is general lack of proper tailings management in Chile. There is a critical willingness to incorporate phytoremediation, with a preference for using native plants. An absence of demonstrably successful phytoremediation projects, funding and access to suitable plants are perceived to be significant limitations. Local community involvement is considered key to successful restoration of tailings.


The novelty of this research work comes from finding consensus opinion across sectors about the lack of proper management of tailings in Chile and a critical willingness to incorporate phytoremediation as an additional stabilization technology. Furthermore, it provides insights from professional stakeholders on the need for more studies on native plants that can be used in phytoremediation, to diversify the representation of stakeholders, and to include input from local communities, directly affected by mines.


Assuntos
Plantas , Biodegradação Ambiental , Chile
4.
Adv Mater Interfaces ; 10(2)2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36817827

RESUMO

Polydiacetylene (PDA) Langmuir films are well known for their blue to red chromatic transitions in response to a variety of stimuli, including UV light, heat, bio-molecule bindings and mechanical stress. In this work, we detail the ability to tune PDA Langmuir films to exhibit discrete chromatic transitions in response to applied mechanical stress. Normal and shear-induced transitions were quantified using the Surface Forces Apparatus and established to be binary and tunable as a function of film formation conditions. Both monomer alkyl tail length and metal cations were used to manipulate the chromatic transition force threshold to enable discrete force sensing from ~50 to ~500 nN µm-2 for normal loading and ~2 to ~40 nN µm-2 for shear-induced transitions, which are appropriate for biological cells. The utility of PDA thin-film sensors was demonstrated with the slime mold Physarum polycephalum. The fluorescence readout of the films enabled: the area explored by Physarum to be visualized, the forces involved in locomotion to be quantified, and revealed novel puncta formation potentially associated with Physarum sampling its environment.

5.
Front Plant Sci ; 13: 1024080, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36438099

RESUMO

Nitrogen isotope discrimination (Δ15N) may have utility as an indicator of nitrogen use in plants. A simple Δ15N-based isotope mass balance (IMB) model has been proposed to provide estimates of efflux/influx (E/I) ratios across root plasma membranes, the proportion of inorganic nitrogen assimilation in roots (P root) and translocation of inorganic nitrogen to shoots (Ti/Tt) under steady-state conditions. We used the IMB model to investigate whether direct selection for yield in canola (Brassica napus L.) has resulted in indirect selection in traits related to nitrogen use. We selected 23 canola lines developed from 1942 to 2017, including open-pollinated (OP) lines developed prior to 2005 as well as more recent commercial hybrids (CH), and in three separate experiments grew them under hydroponic conditions in a greenhouse with either 0.5 mM ammonium, 0.5 mM nitrate, or 5 mM nitrate. Across all lines, E/I, Proot and Ti/Tt averaged 0.09±0.03, 0.82±0.05 and 0.23±0.06 in the low nitrate experiment, and 0.31±0.06, 0.71±0.07 and 0.42±0.12 in the high nitrate experiment, respectively. In contrast, in the ammonium experiment average E/I was 0.40±0.05 while Ti/Tt averaged 0.07±0.04 and Proot averaged 0.97±0.02. Although there were few consistent differences between OP and CH under nitrate nutrition, commercial hybrids were collectively better able to utilize ammonium as their sole nitrogen source, demonstrating significantly greater overall biomass and a lower Proot and a higher Ti/Tt, suggesting a somewhat greater flux of ammonium to the shoot. Average root and whole-plant Δ15N were also slightly higher in CH lines, suggesting a small increase in E/I. An increased ability to tolerate and/or utilize ammonium in modern canola hybrids may have arisen under intensive mono-cropping.

6.
Front Plant Sci ; 13: 905633, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35720550

RESUMO

Styrax tonkinensis has great potential as a biofuel feedstock source having industrial oilseeds with excellent fatty acids (FAs) composition and good fuel properties. Photosynthesis in the developing pericarp could affect the carbon distribution in kernel. During kernel development, more carbon sources are allocated to starch rather than lipid, when the pericarp photosynthesis is reduced by fruit shading treatment. After shading the fruits at 50 days after flowering (DAF), samples of shaded fruit (FSK) and controls (CK) were collected at 80 DAF and analyzed using the proteomic method. We identified 3,181 proteins, of which 277 were differentially expressed proteins, all downregulated in the FSK group. There were 56 proteins found involved in carbohydrate metabolism and lipid biosynthesis leading to oil accumulation with their iTRAQ ratios of FSK/CK ranging from 0.7123 to 1.1075. According to the qRT-PCR analyses, the key genes related to FA and triacylglycerol (TAG) biosynthesis were significantly downregulated between 60 and 90 DAF especially at 80 DAF, while the key genes involved in starch biosynthesis and FA desaturase had no significant difference between the two groups at 80 DAF. Fruit shading is a negative treatment for lipid accumulation but not starch accumulation by restraining enzymic protein expression involved in FA and TAG biosynthesis during S. tonkinensis kernel development.

7.
Tree Physiol ; 42(1): 32-43, 2022 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-33517390

RESUMO

Plants acquire multiple resources from the environment and may need to adjust and/or balance their respective resource-use efficiencies to maximize grow and survival, in a locally adaptive manner. In this study, tissue and whole-plant carbon (C) isotopic composition (δ13C) and carbon/nitrogen (C/N) ratios provided long-term measures of use efficiencies for water (WUE) and nitrogen (NUE), and a nitrogen (N) isotopic composition (δ15N)-based mass balance model was used to estimate traits related to N uptake and assimilation in heart-leaved willow (Salix eriocephala Michx.). In an initial common garden experiment consisting of 34 populations, we found population-level variation in δ13C, C/N ratio and δ15N, indicating different patterns in WUE, NUE and N uptake and assimilation. Although there was no relationship between foliar δ13C and C/N ratios among populations, there was a significant negative correlation between these measures across all individuals, implying a genetic and/or plastic trade-off between WUE and NUE not associated with local adaptation. To eliminate any environmental effect, we grew a subset of 21 genotypes hydroponically with nitrate as the sole N source and detected significant variation in δ13C, δ15N and C/N ratios. Variation in δ15N was mainly due to genotypic differences in the nitrate efflux/influx ratio (E/I) at the root. Both experiments suggested clinal variation in δ15N (and thus N uptake efficiency) with latitude of origin, which may relate to water availability and could contribute to global patterns in ecosystem δ15N. There was a tendency for genotypes with higher WUE to come from more water-replete sites with shorter and cooler growing seasons. We found that δ13C, C/N ratio and E/I were not inter-correlated, suggesting that the selection of growth, WUE, NUE and N uptake efficiency can occur without trade-off.


Assuntos
Salix , Isótopos de Carbono/análise , Ecossistema , Genótipo , Nitrogênio , Isótopos de Nitrogênio/análise , Salix/genética
8.
J Sci Food Agric ; 101(14): 6053-6063, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33856056

RESUMO

BACKGROUND: Styrax tonkinensis is a white-flowered tree with considerable potential as a feedstock source for biodiesel production from the oily seed contained within its nutlike drupes. Transcriptome changes during oil accumulation have been previously reported, but not concurrent changes in the proteome. RESULTS: Using proteomic analysis of samples collected at 50, 70, 100 and 130 days after flowering (DAF), we identified 1472 differentially expressed proteins (DEPs). Based on their expression patterns, we grouped the DEPs into nine clusters and analyzed the pathway enrichment. Proteins related to starch and sucrose metabolism were most abundant at 50 DAF. Proteins involved in fatty acid (FA) biosynthesis were mainly grouped into a cluster that peaked at 70 DAF. Proteins related to protein processing in endoplasmic reticulum had two major patterns, trending either upwards or downwards, while proteins involved in amino acid biosynthesis showed more complex relationships. We identified 42 key enzymes involved in lipid accumulation during kernel development, including the acetyl-CoA carboxylase complex (ACC) and the pyruvate dehydrogenase complex (PDC). One oil body membrane protein, oleosin, continuously increased during kernel development. CONCLUSION: A regulatory network of oil accumulation processes was built based on protein and available transcriptome expression data, which were in good temporal agreement. This analysis placed ACC and PDC in the center of the network, suggesting that the glycolytic provision of substrate plays a central regulatory role in FA biosynthesis and oil accumulation. © 2021 Society of Chemical Industry.


Assuntos
Ácidos Graxos/biossíntese , Sementes/crescimento & desenvolvimento , Styrax/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteoma/genética , Proteoma/metabolismo , Proteômica , Sementes/genética , Sementes/metabolismo , Styrax/genética , Styrax/crescimento & desenvolvimento
9.
Int J Phytoremediation ; 23(5): 539-547, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33142078

RESUMO

Chile has many mine tailing deposits available for phytoremediation through the establishment of metal-tolerant plants. To guide such efforts, it is necessary to know whether roots exclude or take up metals, or if metals are mobilized to shoots. We evaluated a polyculture of ten native species 6 years after they were planted directly into tailings, amended with mycorrhiza before planting or planted with compost. All species were assessed for survival and hare damage. Growth, vigor, chlorophyll content index, and chlorophyll fluorescence were measured in seven species, and root and shoot concentrations of 11 metals and As were measured in five. All species had some level of stress, but there was no clear pattern related to foliar metal concentrations or amendments, the latter also having little effect on growth or survival. Copper, Fe, and Mo concentrations exceeded threshold toxicity levels for leaves and for animal feed in several species. Copper was most concentrated in the roots, and readily mobilized to leaves in three of the five species tested, but not in Prosopis chilensis (algarrobo) and Quillaja saponaria (quillay). Because of lower uptake overall, quillay is recommended for stabilizing tailings while also reducing transport to aerial tissues.


Assuntos
Metais Pesados , Poluentes do Solo , Biodegradação Ambiental , Chile , Cobre/análise , Metais Pesados/análise , Mineração , Poluentes do Solo/análise
10.
Artigo em Inglês | MEDLINE | ID: mdl-33092092

RESUMO

Natural and anthropogenic soil degradation is resulting in a substantial rise in the extension of saline and industrially-polluted soils. Phytoremediation offers an environmentally and economically advantageous solution to soil contamination. Three growth trials were conducted to assess the stress tolerance of native Canadian genotypes of Populus balsamifera L., Salix eriocephala Michx., and one hybrid willow (S. discolor × S. dasyclados) to salinity and hydraulic fracturing (fracking) wastewater. Thirty-three genotypes were grown in NaCl or fracking wastewater solutions between 0 and 7 mS-1 over a period of 3-4 months. P. balsamifera was observed to be relatively salt-intolerant compared to S. eriocephala and hybrid willow, which is likely caused by an inability of P. balsamifera to restrict Na+ translocation. Photosynthesis and transpiration decreased with salinity treatments, and severe reductions occurred with exposure to fracking solutions. Raffinose and stachyose content was tripled in leaf and root tissues. In willows, Na+ was primarily confined to root tissues, Cl- accumulated up to 5% dry weight in leaves, and K+ was translocated from roots to leaves. Willow genotypes CAM-2 and STL-2 displayed the greatest maintenance of growth and resistance to necrotic symptoms in all trials, suggesting that these genotypes may be useful for practical application and further field study.


Assuntos
Biodegradação Ambiental , Fraturamento Hidráulico , Populus , Salix , Poluentes do Solo , Canadá , Folhas de Planta/química , Raízes de Plantas/química , Populus/fisiologia , Salinidade , Salix/fisiologia , Poluentes do Solo/análise , Águas Residuárias
11.
Plant Cell Environ ; 43(9): 2112-2123, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32463123

RESUMO

After root uptake, nitrate is effluxed back to the medium, assimilated locally, or translocated to shoots. Rooted black cottonwood (Populus trichocarpa) scions were supplied with a NO3- -based (0.5 mM) nutrient medium of known isotopic composition (δ15 N), and xylem sap was collected by pressure bombing. To establish a sampling protocol, sap was collected from lower and upper stem sections at 0.1-0.2 MPa above the balancing pressure, and after increasing the pressure by a further 0.5 MPa. Xylem sap from upper stem sections was partially diluted at higher pressure. Further analysis was restricted to sap obtained from intact shoots at low pressure. Total-, NO3- -N and, by difference, organic-N concentrations ranged from 6.1-11.0, 1.2-2.4, and 4.6-9.4 mM, while discrimination relative to the nutrient medium was -6.3 to 0.5‰, -23.3 to -11.5‰ and - 1.3 to 4.9‰, respectively. There was diurnal variation in δ15 N of total- and organic-N, but not NO3- . The difference in δ15 N between xylem NO3- and organic-N suggests that discrimination by nitrate reductase is near 25.1 ± 1.6‰. When this value was used in an isotope mass balance model, the predicted xylem sap NO3- -N to total-N ratio closely matched direct measurement.


Assuntos
Nitratos/análise , Nitrogênio/análise , Populus/química , Xilema/química , Ritmo Circadiano , Hidroponia/métodos , Modelos Biológicos , Nitratos/metabolismo , Nitrogênio/metabolismo , Isótopos de Nitrogênio/análise , Populus/metabolismo , Xilema/metabolismo
12.
BMC Plant Biol ; 20(1): 121, 2020 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-32183691

RESUMO

BACKGROUND: Styrax tonkinensis (Pierre) Craib ex Hartwich has great potential as a woody biodiesel species having seed kernels with high oil content, excellent fatty acid composition and good fuel properties. However, no transcriptome information is available on the molecular regulatory mechanism of oil accumulation in developing S. tonkinensis kernels. RESULTS: The dynamic patterns of oil content and fatty acid composition at 11 time points from 50 to 150 days after flowering (DAF) were analyzed. The percent oil content showed an up-down-up pattern, with yield and degree of unsaturation peaking on or after 140 DAF. Four time points (50, 70, 100, and 130 DAF) were selected for Illumina transcriptome sequencing. Approximately 73 million high quality clean reads were generated, and then assembled into 168,207 unigenes with a mean length of 854 bp. There were 5916 genes that were differentially expressed between different time points. These differentially expressed genes were grouped into 9 clusters based on their expression patterns. Expression patterns of a subset of 12 unigenes were confirmed by qRT-PCR. Based on their functional annotation through the Basic Local Alignment Search Tool and publicly available protein databases, specific unigenes encoding key enzymes, transmembrane transporters, and transcription factors associated with oil accumulation were determined. Three main patterns of expression were evident. Most unigenes peaked at 70 DAF, coincident with a rapid increase in oil content during kernel development. Unigenes with high expression at 50 DAF were associated with plastid formation and earlier stages of oil synthesis, including pyruvate and acetyl-CoA formation. Unigenes associated with triacylglycerol biosynthesis and oil body development peaked at 100 or 130 DAF. CONCLUSIONS: Transcriptome changes during oil accumulation show a distinct temporal trend with few abrupt transitions. Expression profiles suggest that acetyl-CoA formation for oil biosynthesis is both directly from pyruvate and indirectly via acetaldehyde, and indicate that the main carbon source for fatty acid biosynthesis is triosephosphate originating from phosphohexose outside the plastid. Different sn-glycerol-3-phosphate acyltransferases are implicated in diacylglycerol biosynthesis at early versus late stages of oil accumulation. Triacylglycerol biosynthesis may be accomplished by both diacylglycerol and by phospholipid:diacylglycerol acyltransferases.


Assuntos
Redes e Vias Metabólicas , Óleos de Plantas/metabolismo , Sementes/metabolismo , Styrax/genética , Transcriptoma , Biocombustíveis , Styrax/metabolismo
13.
Tree Physiol ; 40(5): 652-666, 2020 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-32083671

RESUMO

Globally, soil salinization is becoming increasingly prevalent, due to local hydrogeologic phenomena, climate change and anthropogenic activities. This has significantly curtailed current world food production and limits future production potential. In the prairie region of North America, sulfate salts, rather than sodium chloride, are often the predominant cause of soil degradation. In order to amend soil quality, revegetate salt-affected sites and recover economic loss associated with soil salinization, the establishment of short-rotation coppice plantations with willows (Salix spp.) has been suggested as a possible solution. To screen for the best candidates for such an application, 20 hybrid and 16 native willow genotypes were treated with three different salt conditions for 3 months. The treatments were designed to reflect the salt composition and concentrations on North American prairies. Under moderate salinity treatment (7 dS m-1), hybrid willows had better growth, as they established quickly while managing salt transport and mineral nutrition balance. However, native willows showed higher potential for long-term survival under severe salinity treatment (14 dS m-1), showing a lower sodium:potassium ratio in roots and better photosynthetic performance. Two native willow genotypes with high osmotic and salinity tolerance indices, specifically LAR-10 and MJW-9, are expected to show superior potential for remediating salt-affected sites. In addition, we observed significantly higher sulfate/sulfur concentrations in both leaf and root tissues in response to the severe salinity treatment, shedding light on the effect of sulfate salinity on sulfate uptake, and potentially sulfur metabolism in plants.


Assuntos
Salix/genética , Canadá , América do Norte , Folhas de Planta , Raízes de Plantas , Salinidade , Tolerância ao Sal
14.
Plant J ; 101(4): 831-844, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31816145

RESUMO

Carbonic anhydrase (CA) is an abundant protein in most photosynthesizing organisms and higher plants. This review paper considers the physiological importance of the more abundant CA isoforms in photosynthesis, through their effects on CO2 diffusion and other processes in photosynthetic organisms. In plants, CA has multiple isoforms in three different families (α, ß and γ) and is mainly known to catalyze the CO2↔HCO3- equilibrium. This reversible conversion has a clear role in photosynthesis, primarily through sustaining the CO2 concentration at the site of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). Despite showing the same major reaction mechanism, the three main CA families are evolutionarily distinct. For different CA isoforms, cellular localization and total gene expression as a function of developmental stage are predicted to determine the role of each family in relation to the net assimilation rate. Reaction-diffusion modeling and observational evidence support a role for CA activity in reducing resistance to CO2 diffusion inside mesophyll cells by facilitating CO2 transfer in both gas and liquid phases. In addition, physical and/or biochemical interactions between CAs and other membrane-bound compartments, for example aquaporins, are suggested to trigger a CO2 -sensing response by stomatal movement. In response to environmental stresses, changes in the expression level of CAs and/or stimulated deactivation of CAs may correspond with lower photosynthetic capacity. We suggest that further studies should focus on the dynamics of the relationship between the activity of CAs (with different subcellular localization, abundance and gene expression) and limitations due to CO2 diffusivity through the mesophyll and supply of CO2 to photosynthetic reactions.


Assuntos
Anidrases Carbônicas/metabolismo , Células do Mesofilo/fisiologia , Fotossíntese/fisiologia , Dióxido de Carbono/metabolismo , Anidrases Carbônicas/genética , Família Multigênica , Proteínas de Plantas/metabolismo , Populus/fisiologia
15.
New Phytol ; 223(4): 1888-1903, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31081152

RESUMO

Occurrence of stomata on both leaf surfaces (amphistomaty) promotes higher stomatal conductance and photosynthesis while simultaneously increasing exposure to potential disease agents in black cottonwood (Populus trichocarpa). A genome-wide association study (GWAS) with 2.2M single nucleotide polymorphisms generated through whole-genome sequencing found 280 loci associated with variation in adaxial stomatal traits, implicating genes regulating stomatal development and behavior. Strikingly, numerous loci regulating plant growth and response to biotic and abiotic stresses were also identified. The most significant locus was a poplar homologue of SPEECHLESS (PtSPCH1). Individuals possessing PtSPCH1 alleles associated with greater adaxial stomatal density originated primarily from environments with shorter growing seasons (e.g. northern latitudes, high elevations) or with less precipitation. PtSPCH1 was expressed in developing leaves but not developing stem xylem. In developing leaves, RNA sequencing showed patterns of coordinated expression between PtSPCH1 and other GWAS-identified genes. The breadth of our GWAS results suggests that the evolution of amphistomaty is part of a larger, complex response in plants. Suites of genes underpin this response, retrieved through genetic association to adaxial stomata, and show coordinated expression during development. We propose that the occurrence of amphistomaty in P. trichocarpa involves PtSPCH1 and reflects selection for supporting rapid growth over investment in immunity.


Assuntos
Padronização Corporal , Proteínas de Plantas/metabolismo , Estômatos de Plantas/fisiologia , Populus/fisiologia , Alelos , Clima , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Estudo de Associação Genômica Ampla , Genótipo , Geografia , Fenótipo , Desenvolvimento Vegetal , Imunidade Vegetal/genética , Proteínas de Plantas/genética , Estômatos de Plantas/genética , Polimorfismo de Nucleotídeo Único/genética , Populus/genética , Populus/crescimento & desenvolvimento , Populus/imunologia , Característica Quantitativa Herdável , Especificidade da Espécie
16.
Sci Rep ; 8(1): 17410, 2018 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-30467326

RESUMO

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.

18.
New Phytol ; 220(1): 300-316, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29963703

RESUMO

Spring bud-break phenology is a critical adaptive feature common to temperate perennial woody plants. Understanding the molecular underpinnings of variation in bud-break is important for elucidating adaptive evolution and predicting outcomes relating to climate change. Field and controlled growth chamber tests were used to assess population-wide patterns in bud-break from wild-sourced black cottonwood (Populus trichocarpa) genotypes. We conducted a genome-wide association study (GWAS) with single nucleotide polymorphisms (SNPs) derived from whole genome sequencing to test for loci underlying variation in bud-break. Bud-break had a quadratic relationship with latitude, where southern- and northern-most provenances generally broke bud earlier than those from central parts of the species' range. Reduced winter chilling increased population-wide variation in bud-break, whereas greater chilling decreased variation. GWAS uncovered 16 loci associated with bud-break. Phenotypic changes connected with allelic variation were replicated in an independent set of P. trichocarpa trees. Despite phenotypic similarities, genetic profiles between southern- and northern-most genotypes were dissimilar based on our GWAS-identified SNPs. We propose that the GWAS-identified loci underpin the geographical pattern in P. trichocarpa and that variation in bud-break reflects different selection for winter chilling and heat sum accumulation, both of which can be affected by climate warming.


Assuntos
Mudança Climática , Fenômenos Ecológicos e Ambientais , Flores/genética , Variação Genética , Genômica , Populus/genética , Alelos , Colúmbia Britânica , Genes de Plantas , Loci Gênicos , Estudo de Associação Genômica Ampla , Geografia , Heterozigoto , Desequilíbrio de Ligação/genética , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Estações do Ano , Fatores de Tempo
19.
Tree Physiol ; 38(6): 785-788, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29788373
20.
Math Biosci ; 296: 1-16, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29208360

RESUMO

A major challenge in matrix-metalloproteinase (MMP) target validation and MMP-inhibitor-drug development for anti-cancer clinical trials is to better understand their complex roles (often competing with each other) in tumor progression. While there is extensive research on the growth-promoting effects of MMPs, the growth-inhibiting effects of MMPs has not been investigated thoroughly. So we develop a continuum model of tumor growth and invasion including chemotaxis and haptotaxis in order to examine the complex interaction between the tumor and its host microenvironment and to explore the inhibiting influence of the gradients of soluble fragments of extracellular matrix (ECM) density on tumor growth and morphology. Previously, it was shown both computationally (in one spatial dimension) and experimentally that the chemotactic pull due to soluble ECM gradients is anti-invasive, contrary to the traditional view of the role of chemotaxis in malignant invasion [1]. With two-dimensional numerical simulation and using a level set based tumor-host interface capturing method, we examine the effects of chemotaxis on the progression and morphology of a tumor growing in nutrient-rich and nutrient-poor microenvironments which was not investigated before. In particular we examine how the geometry of the growing tumor is affected when placed in different environments. We also investigate the effects of varying ECM degradation rate, the production rate of matrix degrading enzymes (MDE), and the conversion of ECM into soluble ECM. We find that chemotaxis due to ECM-fragment gradients strongly influences tumor growth and morphology, and that the instabilities caused by tumor cell proliferation and haptotactic movements can be prevented if chemotaxis is sufficiently strong. The influence of chemotaxis and the above factors on tumor growth and morphology are found to be more prominent in nutrient-poor environments than in nutrient-rich environments. So we extend our investigations of these antinvasive chemotactic influences by examining the effects of cell-cell and cell-ECM adhesion and low proliferation rate for tumors growing in low-nutrient environments. We find that as the extent of chemotaxis increases, the effects of adhesion on tumor growth and shape become negligible. Under conditions of low cell mitosis, chemotaxis may cause the tumor to shrink, as the extent of chemotaxis increases. Both stable and unstable tumor shrinkage are predicted by our model. Unexpectedly, in some cases chemotaxis may contribute toward developing instability where haptotaxis alone induces stable growth.


Assuntos
Quimiotaxia , Matriz Extracelular , Metaloproteinases da Matriz , Modelos Teóricos , Neoplasias , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA