Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
FEBS Lett ; 593(7): 732-742, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30821397

RESUMO

Dysfunction of the dopaminergic pathway is linked to numerous diseases of the nervous system. The D1-D2 receptor heteromer is known to play a role in certain neuropsychiatric disorders, such as depression. Here, we synthesized an eight amino acid residue peptide, EAARRAQE, derived from the third intracellular loop of the D2 receptor and show that the peptide binds to the D1 receptor with comparable efficiency as that of the full-length D2 receptor protein. Moreover, immunoprecipitation studies show the existence of a heteromeric complex formed both in vitro and in total protein derived from temporal and frontal lobe tissue from normal and depressed subjects. The efficiency of the peptide to block the D1-D2 heteromeric complex was comparable in all the samples tested.


Assuntos
Antagonistas dos Receptores de Dopamina D2/farmacologia , Neurônios/metabolismo , Receptores de Dopamina D1/genética , Receptores de Dopamina D2/genética , Animais , Mapeamento Encefálico , Depressão/genética , Depressão/patologia , Dopamina/genética , Dopamina/metabolismo , Antagonistas dos Receptores de Dopamina D2/síntese química , Lobo Frontal/metabolismo , Humanos , Imunoprecipitação , Neurônios/efeitos dos fármacos , Neurônios/patologia , Peptídeos/síntese química , Peptídeos/farmacologia , Ligação Proteica/genética , Ratos , Receptores de Dopamina D1/antagonistas & inibidores , Receptores de Dopamina D2/química , Lobo Temporal/metabolismo
2.
FEBS J ; 286(6): 1204-1213, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30657257

RESUMO

Dihydroorotase (DHOase) is involved in the de novo synthesis of pyrimidine in virtually all organisms, and it is usually associated with two other enzymes found in this biosynthetic pathway, carbamylphosphate synthetase and/or aspartate transcarbamylase (ATCase). In the hyperthermophilic bacterium Aquifex aeolicus, ATCase and DHOase are noncovalently associated. Upon dissociation, ATCase keeps its activity entirely while DHOase is totally inactivated. It was previously shown that high pressure fully restores the activity of this isolated DHOase. On the basis of kinetic studies, site-directed mutagenesis and the use of peptides mimicking loop A, a loop that appears to block access to the active site, was proposed that this pressure-induced reactivation was due to the decrease in the volume of the system, -ΔV, resulting from the disruption of known ionic interactions between the loop and the main part of the protein. In this study, this interpretation is more precisely demonstrated by the determination of the crystallographic structure of isolated DHOase under pressure. In addition to the loop displacements, pressure induces a discrete rearrangement of the catalytic site aspartate 305, an effect that might additionally contribute to the reactivation of this enzyme.


Assuntos
Ácido Aspártico/metabolismo , Bactérias/enzimologia , Di-Hidro-Orotase/química , Di-Hidro-Orotase/metabolismo , Zinco/metabolismo , Aquifex , Ácido Aspártico/química , Ácido Aspártico/genética , Domínio Catalítico , Cristalografia , Di-Hidro-Orotase/genética , Mutagênese Sítio-Dirigida , Mutação , Pressão , Conformação Proteica
3.
J Mol Microbiol Biotechnol ; 22(5): 287-99, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23107800

RESUMO

The genome of the major intestinal archaeon Methanobrevibacter smithii contains a complex gene system coding for carbamoyl phosphate synthetase (CPSase) composed of both full-length and reduced-size synthetase subunits. These ammonia-metabolizing enzymes could play a key role in controlling ammonia assimilation in M. smithii, affecting the metabolism of gut bacterial microbiota, with an impact on host obesity. In this study, we isolated and characterized the small (41 kDa) CPSase homolog from M. smithii. The gene was cloned and overexpressed in Escherichia coli, and the recombinant enzyme was purified in one step. Chemical cross-linking and size exclusion chromatography indicated a homodimeric/tetrameric structure, in accordance with a dimer-based CPSase activity and reaction mechanism. This small enzyme, MS-s, synthesized carbamoyl phosphate from ATP, bicarbonate, and ammonia and catalyzed the same ATP-dependent partial reactions observed for full-length CPSases. Steady-state kinetics revealed a high apparent affinity for ATP and ammonia. Sequence comparisons, molecular modeling, and kinetic studies suggest that this enzyme corresponds to one of the two synthetase domains of the full-length CPSase that catalyze the ATP-dependent phosphorylations involved in the three-step synthesis of carbamoyl phosphate. This protein represents the smallest naturally occurring active CPSase characterized thus far. The small M. smithii CPSase appears to be specialized for carbamoyl phosphate metabolism in methanogens.


Assuntos
Carbamoil-Fosfato Sintase (Amônia)/metabolismo , Genes Arqueais , Methanobrevibacter/enzimologia , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Amônia/metabolismo , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Carbamoil-Fosfato Sintase (Amônia)/genética , Carbamoil-Fosfato Sintase (Amônia)/isolamento & purificação , Carbamoil-Fosfato/metabolismo , Domínio Catalítico , Cromatografia em Gel , Clonagem Molecular , Ativação Enzimática , Escherichia coli/genética , Escherichia coli/metabolismo , Trato Gastrointestinal/microbiologia , Humanos , Methanobrevibacter/genética , Modelos Moleculares , Dados de Sequência Molecular , Fosforilação , Filogenia , Conformação Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Análise de Sequência de Proteína , Especificidade da Espécie
4.
Biochemistry ; 48(4): 766-78, 2009 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-19128030

RESUMO

In prokaryotes, the first three enzymes in pyrimidine biosynthesis, carbamoyl phosphate synthetase (CPS), aspartate transcarbamoylase (ATC), and dihydroorotase (DHO), are commonly expressed separately and either function independently (Escherichia coli) or associate into multifunctional complexes (Aquifex aeolicus). In mammals the enzymes are expressed as a single polypeptide chain (CAD) in the order CPS-DHO-ATC and associate into a hexamer. This study presents the three-dimensional structure of the noncovalent hexamer of DHO and ATC from the hyperthermophile A. aeolicus at 2.3 A resolution. It is the first structure of any multienzyme complex in pyrimidine biosynthesis and is a possible model for the core of mammalian CAD. The structure has citrate, a near isosteric analogue of carbamoyl aspartate, bound to the active sites of both enzymes. Three active site loops that are intrinsically disordered in the free, inactive DHO are ordered in the complex. The reorganization also changes the peptide bond between Asp153, a ligand of the single zinc atom in DHO, and Gly154, to the rare cis conformation. In the crystal structure, six DHO and six ATC chains form a hollow dodecamer, in which the 12 active sites face an internal reaction chamber that is approximately 60 A in diameter and connected to the cytosol by narrow tunnels. The entrances and the interior of the chamber are both electropositive, which suggests that the architecture of this nanoreactor modifies the kinetics of the bisynthase, not only by steric channeling but also by preferential escape of the product, dihydroorotase, which is less negatively charged than its precursors, carbamoyl phosphate, aspartate, or carbamoyl aspartate.


Assuntos
Aspartato Carbamoiltransferase/metabolismo , Bactérias/enzimologia , Di-Hidro-Orotase/metabolismo , Complexos Multienzimáticos/metabolismo , Pirimidinas/biossíntese , Regulação Alostérica , Aspartato Carbamoiltransferase/química , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Sítios de Ligação/fisiologia , Cristalografia por Raios X , Di-Hidro-Orotase/química , Di-Hidro-Orotase/isolamento & purificação , Complexos Multienzimáticos/química , Ácido Orótico/análogos & derivados , Ácido Orótico/química , Ácido Orótico/metabolismo , Estrutura Terciária de Proteína/fisiologia , Pirimidinas/química , Eletricidade Estática , Termodinâmica
5.
Mol Cell Biochem ; 301(1-2): 69-81, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17206380

RESUMO

The flux through the de novo pyrimidine biosynthetic pathway is controlled by the multifunctional protein CAD, which catalyzes the first three steps. The cell cycle dependent regulation of pyrimidine biosynthesis is a consequence of sequential phosphorylation of CAD Thr456 and Ser1406 by the MAP kinase and PKA cascades, respectively. Coordinated regulation of the pathway requires precise timing of the two phosphorylation events. These studies show that phosphorylation of purified CAD by PKA antagonizes MAP kinase phosphorylation, and vice versa. Similar results were observed in vivo. Forskolin activation of PKA in BHK-21 cells resulted in a 8.5 fold increase in Ser1406 phosphorylation and severely curtailed the MAP kinase mediated phosphorylation of CAD Thr456. Moreover, the relative activity of MAP kinase and PKA was found to determine the extent of Thr456 phosphorylation. Transfectants expressing elevated levels of MAP kinase resulted in a 11-fold increase in Thr456 phosphorylation, whereas transfectants that overexpress PKA reduced Thr456 phosphorylation 5-fold. While phosphorylation of one site by one kinase may induce conformational changes that interfere with phosphorylation by the other, the observation that both MAP kinase and PKA form stable complexes with CAD suggest that the mutual antagonism is the result of steric interference by the bound kinases. The reciprocal antagonism of CAD phosphorylation by MAP kinase and PKA provides an elegant mechanism to coordinate the cell cycle-dependent regulation of pyrimidine biosynthesis ensuring that signals for up- and down-regulation of the pathway do not conflict.


Assuntos
Aspartato Carbamoiltransferase/metabolismo , Carbamoil Fosfato Sintase (Glutamina-Hidrolizante)/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Di-Hidro-Orotase/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Animais , Carbamoil-Fosfato Sintase (Amônia)/metabolismo , Linhagem Celular , Colforsina/metabolismo , Cricetinae , Cricetulus , Ativação Enzimática , Inibidores Enzimáticos/metabolismo , Fator de Crescimento Epidérmico/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Fosforilação , Subunidades Proteicas/metabolismo
6.
J Mol Biol ; 348(3): 535-47, 2005 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-15826652

RESUMO

Dihydroorotases (EC 3.5.2.3) catalyze the reversible cyclization of carbamoyl aspartate to form dihydroorotate in de novo pyrimidine biosynthesis. The X-ray structures of Aquifex aeolicus dihydroorotase in two space groups, C222(1) and C2, were determined at a resolution of 1.7A. These are the first structures of a type I dihydroorotase, a class of molecules that includes the dihydroorotase domain of mammalian CAD. The type I enzymes are more ancient and larger, at 45 kDa, than the type II enzymes exemplified by the 38 kDa Escherichia coli dihydroorotase. Both dihydroorotases are members of the metallo-dependent hydrolase superfamily, whose members have a distorted "TIM barrel" domain containing the active site. However, A.aeolicus dihydroorotase has a second, composite domain, which the E.coli enzyme lacks and has only one of the two zinc atoms present in the E.coli enzyme. A.aeolicus dihydroorotase is unique in exhibiting significant activity only when complexed with aspartate transcarbamoylase, whereas the E.coli dihydroorotase and the CAD dihydroorotase domain are active as free proteins. The latency of A.aeolicus dihydroorotase can be related to two differences between its structure and that of E.coli dihydroorotase: (1) the monoclinic structure has a novel cysteine ligand to the zinc that blocks the active site and possibly functions as a "cysteine switch"; and (2) active site residues that bind the substrate in E.coli dihydroorotase are located in disordered loops in both crystal structures of A.aeolicus dihydroorotase and may function as a disorder-to-order "entropy switch".


Assuntos
Bactérias/enzimologia , Di-Hidro-Orotase/química , Estrutura Terciária de Proteína , Sequência de Aminoácidos , Animais , Sítios de Ligação , Cristalografia por Raios X , Cisteína/química , Di-Hidro-Orotase/genética , Di-Hidro-Orotase/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Molecular , Estrutura Secundária de Proteína , Alinhamento de Sequência , Zinco/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA