Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Bio Protoc ; 13(14): e4723, 2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37497446

RESUMO

Microtubule structure is commonly investigated using single-particle analysis (SPA) or subtomogram averaging (STA), whose main objectives are to gather high-resolution information on the αß-tubulin heterodimer and on its interactions with neighboring molecules within the microtubule lattice. The maps derived from SPA approaches usually delineate a continuous organization of the αß-tubulin heterodimer that alternate regularly head-to-tail along protofilaments, and that share homotypic lateral interactions between monomers (α-α, ß-ß), except at one unique region called the seam, made of heterotypic ones (α-ß, ß-α). However, this textbook description of the microtubule lattice has been challenged over the years by several studies that revealed the presence of multi-seams in microtubules assembled in vitro from purified tubulin. To analyze in deeper detail their intrinsic structural heterogeneity, we have developed a segmented subtomogram averaging (SSTA) strategy on microtubules decorated with kinesin motor-domains that bind every αß-tubulin heterodimer. Individual protofilaments and microtubule centers are modeled, and sub-volumes are extracted at every kinesin motor domain position to obtain full subtomogram averages of the microtubules. The model is divided into shorter segments, and subtomogram averages of each segment are calculated using the main parameters of the full-length microtubule settings as a template. This approach reveals changes in the number and location of seams within individual microtubules assembled in vitro from purified tubulin and in Xenopus egg cytoplasmic extracts. Key features This protocol builds upon the method developed by J.M. Heumann to perform subtomogram averages of microtubules and extends it to divide them into shorter segments. Microtubules are decorated with kinesin motor-domains to determine the underlying organization of its constituent αß-tubulin heterodimers. The SSTA approach allows analysis of the structural heterogeneity of individual microtubules and reveals multi-seams and changes in their number and location within their shaft. Graphical overview.

2.
Biol Cell ; 115(5): e202300004, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36775975

RESUMO

At first glance, the structure of a microtubule is simple. Globular α- and ß-tubulin subunits form constitutive heterodimers that align head-to-tail in protofilaments. In the most common configuration, 13 protofilaments associate laterally with a slight longitudinal stagger that results in a left-handed 3-start helix featuring lateral associations between tubulin subunits. This seemingly straightforward description is actually based on almost half a century of research aimed at understanding how tubulin dimers interact within the microtubule lattice. But while we start to have a good overview of their architecture in vitro, our knowledge of microtubule-lattice organization in vivo is nowhere near to being complete.


Assuntos
Microtúbulos , Tubulina (Proteína) , Citoesqueleto
3.
FEBS J ; 290(6): 1461-1472, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-35015931

RESUMO

The arrest of protein synthesis caused when ribosomes stall on an mRNA lacking a stop codon is a deadly risk for all cells. In bacteria, this situation is remedied by the trans-translation quality control system. Trans-translation occurs because of the synergistic action of two main partners, transfer-messenger RNA (tmRNA) and small protein B (SmpB). These act in complex to monitor protein synthesis, intervening when necessary to rescue stalled ribosomes. During this process, incomplete nascent peptides are tagged for destruction, problematic mRNAs are degraded and the previously stalled ribosomes are recycled. In this 'Structural Snapshot' article, we describe the mechanism at the molecular level, a view updated after the most recent structural studies using cryo-electron microscopy.


Assuntos
Biossíntese de Proteínas , Ribossomos , Microscopia Crioeletrônica , Ribossomos/metabolismo , RNA Bacteriano/química , Códon de Terminação , RNA Mensageiro/metabolismo
4.
Elife ; 112022 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-36503602

RESUMO

Microtubules are tubes of about 25 nm in diameter that are critically involved in a variety of cellular functions, including motility, compartmentalization, and division. They are considered as pseudo-helical polymers whose constituent αß-tubulin heterodimers share lateral homotypic interactions, except at one unique region called the seam. Here, we used a segmented sub-tomogram averaging strategy to reassess this paradigm and analyze the organization of the αß-tubulin heterodimers in microtubules assembled from purified porcine brain tubulin in the presence of GTP and GMPCPP, and in Xenopus egg cytoplasmic extracts. We find that in almost all conditions, microtubules incorporate variable protofilament and/or tubulin subunit helical-start numbers, as well as variable numbers of seams. Strikingly, the seam number and location vary along individual microtubules, generating holes of one to a few subunits in size within their lattices. Together, our results reveal that the formation of mixed and discontinuous microtubule lattices is an intrinsic property of tubulin that requires the formation of unique lateral interactions without longitudinal ones. They further suggest that microtubule assembly is tightly regulated in a cytoplasmic environment.


Assuntos
Microtúbulos , Tubulina (Proteína) , Animais , Suínos , Tubulina (Proteína)/metabolismo , Xenopus laevis/metabolismo , Microtúbulos/metabolismo , Citoplasma/metabolismo , Encéfalo/metabolismo
5.
Nat Commun ; 12(1): 4909, 2021 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-34389707

RESUMO

In bacteria, trans-translation is the main rescue system, freeing ribosomes stalled on defective messenger RNAs. This mechanism is driven by small protein B (SmpB) and transfer-messenger RNA (tmRNA), a hybrid RNA known to have both a tRNA-like and an mRNA-like domain. Here we present four cryo-EM structures of the ribosome during trans-translation at resolutions from 3.0 to 3.4 Å. These include the high-resolution structure of the whole pre-accommodated state, as well as structures of the accommodated state, the translocated state, and a translocation intermediate. Together, they shed light on the movements of the tmRNA-SmpB complex in the ribosome, from its delivery by the elongation factor EF-Tu to its passage through the ribosomal A and P sites after the opening of the B1 bridges. Additionally, we describe the interactions between the tmRNA-SmpB complex and the ribosome. These explain why the process does not interfere with canonical translation.


Assuntos
Proteínas de Escherichia coli/genética , Escherichia coli/genética , Biossíntese de Proteínas/genética , RNA Bacteriano/genética , Proteínas de Ligação a RNA/genética , Ribossomos/genética , Sítios de Ligação/genética , Microscopia Crioeletrônica , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Modelos Moleculares , Conformação de Ácido Nucleico , Ligação Proteica , Domínios Proteicos , RNA Bacteriano/química , RNA Bacteriano/metabolismo , RNA Mensageiro/química , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA de Transferência/química , RNA de Transferência/genética , RNA de Transferência/metabolismo , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo , Ribossomos/metabolismo , Ribossomos/ultraestrutura
6.
Nucleic Acids Res ; 48(4): e22, 2020 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-31919515

RESUMO

In order to discover new antibiotics with improved activity and selectivity, we created a reliable in vitro reporter system to detect trans-translation activity, the main mechanism for recycling ribosomes stalled on problematic messenger RNA (mRNA) in bacteria. This system is based on an engineered tmRNA variant that reassembles the green fluorescent protein (GFP) when trans-translation is active. Our system is adapted for high-throughput screening of chemical compounds by fluorescence.


Assuntos
Bactérias/genética , Proteínas de Fluorescência Verde/genética , Biossíntese de Proteínas , RNA Mensageiro/genética , Antibacterianos/síntese química , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Humanos , Biossíntese de Proteínas/efeitos dos fármacos , Proteínas de Ligação a RNA/genética , Ribossomos/efeitos dos fármacos , Ribossomos/genética
7.
Bio Protoc ; 10(21): e3814, 2020 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-33659467

RESUMO

The α-ß tubulin heterodimer undergoes subtle conformational changes during microtubule assembly. These can be modulated by external factors, whose effects on microtubule structure can be characterized on 2D views obtained by cryo-electron microscopy. Analysis of microtubule images is facilitated if they are straight enough to interpret and filter their image Fourier transform, which provide useful information concerning the arrangement of tubulin molecules inside the microtubule lattice. Here, we describe the use of the TubuleJ software to straighten microtubules and determine their lattice parameters. Basic 3D reconstructions can be performed to evaluate the relevance of these parameters. This approach can be used to analyze the effects of nucleotide analogues, drugs or MAPs on microtubule structure, or to select microtubule images prior to high-resolution 3D reconstructions.

8.
Ann N Y Acad Sci ; 1447(1): 80-87, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30815901

RESUMO

In bacteria, trans-translation is the primary quality control mechanism for rescuing ribosomes arrested during translation. This key process is universally conserved and plays a crucial role in the viability and virulence of all bacteria. It is performed by transfer-messenger RNA (tmRNA) and its protein partner small protein B (SmpB). Here, we show that tmRNA is a key molecule that could have given birth to modern protein synthesis. The traces of an ancient RNA world persist in the structure of modern tmRNA, suggesting its old origins. Therefore, since it has both tRNA and mRNA functions, tmRNA could be the missing link that allowed modern genetic code to be read by the ribosome.


Assuntos
Biossíntese de Proteínas/fisiologia , RNA Bacteriano/genética , RNA Mensageiro/genética , RNA de Transferência/genética , Animais , Humanos , Estrutura Secundária de Proteína , RNA Bacteriano/química , RNA Mensageiro/química , RNA de Transferência/química
9.
Nat Commun ; 10(1): 752, 2019 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-30765709

RESUMO

Viruses modulate ecosystems by directly altering host metabolisms through auxiliary metabolic genes. However, viral genomes are not known to encode the core components of translation machinery, such as ribosomal proteins (RPs). Here, using reference genomes and global-scale viral metagenomic datasets, we identify 14 different RPs across viral genomes arising from cultivated viral isolates and metagenome-assembled viruses. Viruses tend to encode dynamic RPs, easily exchangeable between ribosomes, suggesting these proteins can replace cellular versions in host ribosomes. Functional assays confirm that the two most common virus-encoded RPs, bS21 and bL12, are incorporated into 70S ribosomes when expressed in Escherichia coli. Ecological distribution of virus-encoded RPs suggests some level of ecosystem adaptations as aquatic viruses and viruses of animal-associated bacteria are enriched for different subsets of RPs. Finally, RP genes are under purifying selection and thus likely retained an important function after being horizontally transferred into virus genomes.

10.
J Mol Biol ; 429(23): 3617-3625, 2017 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-29031699

RESUMO

In bacteria, trans-translation is the main quality control mechanism for rescuing ribosomes arrested during translation. This key process is universally conserved and plays a critical role in the viability and virulence of many pathogens. We developed a reliable in vivo double-fluorescence reporter system for the simultaneous quantification of both trans-translation and the associated proteolysis activities in bacteria. The assay was validated using mutant bacteria lacking tmRNA, SmpB, and the ClpP protease. Both antisense tmRNA-binding RNA and a peptide mimicking the SmpB C-terminal tail proved to be potent inhibitors of trans-translation in vivo. The double-fluorescent reporter was also tested with KKL-35, an oxadiazole derivative that is supposed to be a promising trans-translation inhibitor, and it surprisingly turns out that trans-translation is not the only target of KKL-35 in vivo.


Assuntos
Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Biossíntese de Proteínas , RNA Bacteriano/metabolismo , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Ribossomos/metabolismo , Proteínas de Bactérias/genética , RNA Bacteriano/genética , RNA Mensageiro/genética , Proteínas de Ligação a RNA/genética , Ribossomos/genética
11.
Extremophiles ; 20(3): 301-10, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27039108

RESUMO

Bacteria of the genus Photobacterium thrive worldwide in oceans and show substantial eco-physiological diversity including free-living, symbiotic and piezophilic life styles. Genomic characteristics underlying this variability across species are poorly understood. Here we carried out genomic and physiological analysis of Photobacterium phosphoreum strain ANT-2200, the first deep-sea luminous bacterium of which the genome has been sequenced. Using optical mapping we updated the genomic data and reassembled it into two chromosomes and a large plasmid. Genomic analysis revealed a versatile energy metabolic potential and physiological analysis confirmed its growth capacity by deriving energy from fermentation of glucose or maltose, by respiration with formate as electron donor and trimethlyamine N-oxide (TMAO), nitrate or fumarate as electron acceptors, or by chemo-organo-heterotrophic growth in rich media. Despite that it was isolated at a site with saturated dissolved oxygen, the ANT-2200 strain possesses four gene clusters coding for typical anaerobic enzymes, the TMAO reductases. Elevated hydrostatic pressure enhances the TMAO reductase activity, mainly due to the increase of isoenzyme TorA1. The high copy number of the TMAO reductase isoenzymes and pressure-enhanced activity might imply a strategy developed by bacteria to adapt to deep-sea habitats where the instant TMAO availability may increase with depth.


Assuntos
Adaptação Fisiológica , Metabolismo Energético , Genoma Bacteriano , Photobacterium/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Transporte de Elétrons , Glucose/metabolismo , Pressão Hidrostática , Isoenzimas/genética , Isoenzimas/metabolismo , Maltose/metabolismo , Metilaminas/metabolismo , Oxirredutases N-Desmetilantes/genética , Oxirredutases N-Desmetilantes/metabolismo , Photobacterium/metabolismo , Água do Mar/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA