Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 30(35): 84583-84594, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37368207

RESUMO

Artificial sweeteners are receiving increasing attention as newly recognized emerging contaminants that mainly reach the aquatic environment through the discharge of municipal wastewater containing large amount of these compounds. In this study, the impact of raw untreated wastewater discharges on the levels and the water/sediment distribution of artificial sweeteners in the Danube River and its largest tributaries in Serbia was evaluated, and a comprehensive assessment of environmental risks for freshwater and benthic organisms was performed. Acesulfame and sucralose were detected in all river water samples (100%), while saccharin (59%) and cyclamate (12%) were less frequently found, indicating long-term continuous sewage-derived pollution. Aspartame (100%) and neotame (60%) were the only artificial sweeteners recorded in the sediment samples due to their preference to sorb to particulate matter in the water/sediment system. In terms of ecotoxicological risk, a low risk for aquatic organisms was determined at the detected levels of saccharin in river water, while a high to medium risk was found for benthic biota at the concentrations of neotame and aspartame detected in sediments. The largest contribution to the pollution of the Danube River Basin with artificial sweeteners, and consequently the highest environmental risk, was determined in the two largest cities, the capital Belgrade and Novi Sad, which raises the issue of transboundary pollution.


Assuntos
Edulcorantes , Poluentes Químicos da Água , Edulcorantes/análise , Águas Residuárias , Rios , Sacarina/análise , Aspartame , Sérvia , Poluentes Químicos da Água/análise , Água Doce/análise , Água , Medição de Risco , Monitoramento Ambiental
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA