Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Robot ; 8(77): eade9676, 2023 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-37099636

RESUMO

The gut-brain axis, which is mediated via enteric and central neurohormonal signaling, is known to regulate a broad set of physiological functions from feeding to emotional behavior. Various pharmaceuticals and surgical interventions, such as motility agents and bariatric surgery, are used to modulate this axis. Such approaches, however, are associated with off-target effects or post-procedure recovery time and expose patients to substantial risks. Electrical stimulation has also been used to attempt to modulate the gut-brain axis with greater spatial and temporal resolution. Electrical stimulation of the gastrointestinal (GI) tract, however, has generally required invasive intervention for electrode placement on serosal tissue. Stimulating mucosal tissue remains challenging because of the presence of gastric and intestinal fluid, which can influence the effectiveness of local luminal stimulation. Here, we report the development of a bioinspired ingestible fluid-wicking capsule for active stimulation and hormone modulation (FLASH) capable of rapidly wicking fluid and locally stimulating mucosal tissue, resulting in systemic modulation of an orexigenic GI hormone. Drawing inspiration from Moloch horridus, the "thorny devil" lizard with water-wicking skin, we developed a capsule surface capable of displacing fluid. We characterized the stimulation parameters for modulation of various GI hormones in a porcine model and applied these parameters to an ingestible capsule system. FLASH can be orally administered to modulate GI hormones and is safely excreted with no adverse effects in porcine models. We anticipate that this device could be used to treat metabolic, GI, and neuropsychiatric disorders noninvasively with minimal off-target effects.


Assuntos
Fome , Robótica , Animais , Suínos , Hormônios
2.
J Control Release ; 343: 31-42, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34998917

RESUMO

Glycemic control through titration of insulin dosing remains the mainstay of diabetes mellitus treatment. Insulin therapy is generally divided into dosing with long- and short-acting insulin, where long-acting insulin provides basal coverage and short-acting insulin supports glycemic excursions associated with eating. The dosing of short-acting insulin often involves several steps for the user including blood glucose measurement and integration of potential carbohydrate loads to inform safe and appropriate dosing. The significant burden placed on the user for blood glucose measurement and effective carbohydrate counting can manifest in substantial effects on adherence. Through the application of computer vision, we have developed a smartphone-based system that is able to detect the carbohydrate load of food by simply taking a single image of the food and converting that information into a required insulin dose by incorporating a blood glucose measurement. Moreover, we report the development of comprehensive all-in-one insulin delivery systems that streamline all operations that peripheral devices require for safe insulin administration, which in turn significantly reduces the complexity and time required for titration of insulin. The development of an autonomous system that supports maximum ease and accuracy of insulin dosing will transform our ability to more effectively support patients with diabetes.


Assuntos
Diabetes Mellitus Tipo 1 , Insulina , Glicemia , Automonitorização da Glicemia , Diabetes Mellitus Tipo 1/tratamento farmacológico , Humanos , Hipoglicemiantes/uso terapêutico , Insulina/uso terapêutico , Insulina de Ação Curta/uso terapêutico
3.
Adv Sci (Weinh) ; 8(24): e2102861, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34713599

RESUMO

Continuous monitoring in the intensive care setting has transformed the capacity to rapidly respond with interventions for patients in extremis. Noninvasive monitoring has generally been limited to transdermal or intravascular systems coupled to transducers including oxygen saturation or pressure. Here it is hypothesized that gastric fluid (GF) and gases, accessible through nasogastric (NG) tubes, commonly found in intensive care settings, can provide continuous access to a broad range of biomarkers. A broad characterization of biomarkers in swine GF coupled to time-matched serum is conducted . The relationship and kinetics of GF-derived analyte level dynamics is established by correlating these to serum levels in an acute renal failure and an inducible stress model performed in swine. The ability to monitor ketone levels and an inhaled anaesthetic agent (isoflurane) in vivo is demonstrated with novel NG-compatible sensor systems in swine. Gastric access remains a main stay in the care of the critically ill patient, and here the potential is established to harness this establishes route for analyte evaluation for clinical management.


Assuntos
Injúria Renal Aguda/metabolismo , Anestésicos Inalatórios/metabolismo , Suco Gástrico/metabolismo , Isoflurano/metabolismo , Monitorização Fisiológica/métodos , Animais , Biomarcadores/metabolismo , Modelos Animais de Doenças , Intubação Gastrointestinal , Cetonas/metabolismo , Estômago/metabolismo , Suínos
4.
Sci Transl Med ; 12(549)2020 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-32424018

RESUMO

Strategies to split ventilators to support multiple patients requiring ventilatory support have been proposed and used in emergency cases in which shortages of ventilators cannot otherwise be remedied by production or procurement strategies. However, the current approaches to ventilator sharing lack the ability to individualize ventilation to each patient, measure pulmonary mechanics, and accommodate rebalancing of the airflow when one patient improves or deteriorates, posing safety concerns to patients. Potential cross-contamination, lack of alarms, insufficient monitoring, and inability to adapt to sudden changes in patient status have prevented widespread acceptance of ventilator sharing. We have developed an individualized system for augmenting ventilator efficacy (iSAVE) as a rapidly deployable platform that uses a single ventilator to simultaneously and more safely support two individuals. The iSAVE enables individual-specific volume and pressure control and the rebalancing of ventilation in response to improvement or deterioration in an individual's respiratory status. The iSAVE incorporates mechanisms to measure pulmonary mechanics, mitigate cross-contamination and backflow, and accommodate sudden flow changes due to individual interdependencies within the respiratory circuit. We demonstrate these capacities through validation using closed- and open-circuit ventilators on linear test lungs. We show that the iSAVE can temporarily ventilate two pigs on one ventilator as efficaciously as each pig on its own ventilator. By leveraging off-the-shelf medical components, the iSAVE could rapidly expand the ventilation capacity of health care facilities during emergency situations such as pandemics.


Assuntos
Pandemias , Ventiladores Mecânicos , Animais , Humanos , Pulmão , Suínos
5.
Proc Natl Acad Sci U S A ; 117(22): 11987-11994, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32424082

RESUMO

Chronic hepatitis C virus (HCV) infection is a leading cause of cirrhosis worldwide and kills more Americans than 59 other infections, including HIV and tuberculosis, combined. While direct-acting antiviral (DAA) treatments are effective, limited uptake of therapy, particularly in high-risk groups, remains a substantial barrier to eliminating HCV. We developed a long-acting DAA system (LA-DAAS) capable of prolonged dosing and explored its cost-effectiveness. We designed a retrievable coil-shaped LA-DAAS compatible with nasogastric tube administration and the capacity to encapsulate and release gram levels of drugs while resident in the stomach. We formulated DAAs in drug-polymer pills and studied the release kinetics for 1 mo in vitro and in vivo in a swine model. The LA-DAAS was equipped with ethanol and temperature sensors linked via Bluetooth to a phone application to provide patient engagement. We then performed a cost-effectiveness analysis comparing LA-DAAS to DAA alone in various patient groups, including people who inject drugs. Tunable release kinetics of DAAs was enabled for 1 mo with drug-polymer pills in vitro, and the LA-DAAS safely and successfully provided at least month-long release of sofosbuvir in vivo. Temperature and alcohol sensors could interface with external sources for at least 1 mo. The LA-DAAS was cost-effective compared to DAA therapy alone in all groups considered (base case incremental cost-effectiveness ratio $39,800). We believe that the LA-DAA system can provide a cost-effective and patient-centric method for HCV treatment, including in high-risk populations who are currently undertreated.


Assuntos
Antivirais/administração & dosagem , Sistemas de Liberação de Medicamentos , Hepatite C Crônica/tratamento farmacológico , Animais , Antivirais/farmacocinética , Benzimidazóis/administração & dosagem , Benzimidazóis/farmacocinética , Carbamatos , Análise Custo-Benefício , Modelos Animais de Doenças , Portadores de Fármacos/farmacocinética , Sistemas de Liberação de Medicamentos/economia , Sistemas de Liberação de Medicamentos/instrumentação , Sistemas de Liberação de Medicamentos/métodos , Fluorenos/administração & dosagem , Fluorenos/farmacocinética , Hepacivirus/efeitos dos fármacos , Imidazóis/administração & dosagem , Imidazóis/farmacocinética , Cirrose Hepática/tratamento farmacológico , Modelos Animais , Pirrolidinas , Ribavirina/administração & dosagem , Ribavirina/farmacocinética , Sofosbuvir/administração & dosagem , Sofosbuvir/farmacocinética , Suínos , Valina/análogos & derivados
6.
Sci Adv ; 6(3): eaay0065, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-32010768

RESUMO

Triggerable materials capable of being degraded by selective stimuli stand to transform our capacity to precisely control biomedical device activity and performance while reducing the need for invasive interventions. Here, we describe the development of a modular and tunable light-triggerable hydrogel system capable of interfacing with implantable devices. We apply these materials to two applications in the gastrointestinal (GI) tract: a bariatric balloon and an esophageal stent. We demonstrate biocompatibility and on-demand triggering of the material in vitro, ex vivo, and in vivo. Moreover, we characterize performance of the system in a porcine large animal model with an accompanying ingestible LED. Light-triggerable hydrogels have the potential to be applied broadly throughout the GI tract and other anatomic areas. By demonstrating the first use of light-degradable hydrogels in vivo, we provide biomedical engineers and clinicians with a previously unavailable, safe, dynamically deliverable, and precise tool to design dynamically actuated implantable devices.


Assuntos
Trato Gastrointestinal/fisiologia , Hidrogéis/efeitos da radiação , Luz , Animais , Materiais Biocompatíveis/farmacologia , Células CACO-2 , Esôfago/fisiologia , Células HT29 , Humanos , Hidrogéis/síntese química , Stents , Suínos
7.
Sci Transl Med ; 11(521)2019 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-31801885

RESUMO

Poor patient adherence to oral contraceptives is the predominant cause of failure of these therapies, leading to unplanned pregnancies that can negatively affect female health worldwide. To improve patient adherence, we developed an oral contraceptive that is administered once a month. Here, we describe the design and report in vivo characterization of a levonorgestrel-releasing gastric resident dosage form in pigs.


Assuntos
Anticoncepcionais Orais/administração & dosagem , Administração Oral , Animais , Anticoncepcionais Orais/sangue , Anticoncepcionais Orais/farmacocinética , Formas de Dosagem , Esquema de Medicação , Liberação Controlada de Fármacos , Feminino , Levanogestrel/administração & dosagem , Levanogestrel/sangue , Levanogestrel/farmacocinética , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA