Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
1.
Mol Genet Metab Rep ; 38: 101056, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38469100

RESUMO

Background: Prenatal whole exome sequencing (WES) approaches can provide genetic diagnosis with rapid turnaround time and high diagnostic rate when conventional tests are negative. Here we report a family with multiple pregnancy loss and with repeated occurrence of fetal microcephaly. Methods and results: Because of positive family history and recurrent structural abnormality during the pregnancies that may lead postnatal neurodevelopmental consequences, WES analysis was indicated. Umbilical cord blood sampling was carried out and WES was performed using Twist Human Core Exome Kit and Illumina sequencing technology. The presence of pathogenic variants was confirmed by Sanger sequencing. WES analysis revealed a known pathogenic c.8506_8507delCA (p.Gln2836Glufs*35, rs587783280) and a novel pathogenic c.3134_3135delTC (p.Leu1045Glnfs*17) ASPM mutations in the fetus in compound heterozygous state. The c.3134_3135delTC has never been reported in the literature. Conclusions: Our findings serve additional evidence that WES can be an efficient and relevant tool to diagnose certain genetic disorders with appropriate indication and to assess the recurrence risk of a disease. With the application of WES in combination with pre-implantation genetic tests, we can avoid the transmission of pathogenic mutations and we can achieve a decreased abortion rate in obstetric care.

2.
Ideggyogy Sz ; 77(1-2): 27-37, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38321856

RESUMO

Background and purpose:

Glioblastoma (GBM), a highly aggressive form of brain tumors, has been extensively studied using OMICS methods, and the most characteristic molecular determinants have been incorporated into the histopathological diagnosis. Research data, nevertheless, only partially have been adopted in clinical practice. Here we aimed to present results of our epige­no­mic GBM profiling to better understand early and late determinants of these tumors, and to share main elements of our findings with practicing professionals.

. Methods:

GBM specimens were surgically obtained after first diagnosis (GBM1) and at recurrence (GBM2). DNA was extracted from 24 sequential pairs of formalin-fixed, paraffin-embedded tumor tissues. The Reduced Representation Bisulfite Sequencing kit was used for library preparation. Pooled libraries were sequenced on an Illumina NextSeq 550 instrument. Methylation controls (MC) were obtained from a publicly available database. Bioinformatic analyses were performed to identify differentially methylated pathways and their elements in cohorts of MC, GBM1 and GBM2.

. Results:

Several differentially methylated pathways involved in basic intracellular and brain tissue developmental processes were identified in the GBM1 vs. MC and GBM2 vs. MC comparisons. Among differentially me­thylated pathways, those involved in immune regulation, neurotransmitter (particularly dopaminergic, noradrenergic and glutaminergic) responses and regulation of stem cell differentiation and proliferation stood out in the GBM2 vs. GBM1 comparisons.

. Conclusion:

Our study revealed biological complexity of early and late gliomagenesis encompassing mechanisms from basic intracellular through distorted neurodevelopmental processes to more specific immune and highjacked neurotransmitter pathways in the tumor microenvironment. These findings may offer considerations for therapeutic approaches.

.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/patologia , Epigenômica , Metilação de DNA , Encéfalo/patologia , Neoplasias Encefálicas/patologia , Neurotransmissores , Regulação Neoplásica da Expressão Gênica , Microambiente Tumoral
3.
Med Princ Pract ; 33(2): 112-121, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38262379

RESUMO

OBJECTIVE: Early embryonic development is characterized by rapid cell division and gene activation, making the embryo extremely sensitive to environmental influences. Light exposure can affect embryonic development through a direct toxic effect on the embryo via the generation of reactive oxygen species. In a previous study, we demonstrated the positive effect of improved light-protected embryo culture conditions implemented in our laboratory. This study aimed to investigate the changes in human embryo development under light protection during the conventional in vitro fertilization (IVF) and intracytoplasmic sperm injection (ICSI). MATERIALS AND METHODS: We tested the potential beneficial effect of light filters to reduce the risk of toxic effects of light. IVF outcomes were compared between two experimental conditions, light protection with red light filters versus no light protection as a control. RESULTS: Blastocyst development rate in IVF was significantly higher in the light-protected group than in the group treated under conventional conditions (46.6 vs. 26.7%). In the case of ICSI, we obtained a similar result (44.5 vs. 31.6%). The rate of cryopreservation with at least one embryo was higher in the light-protected phase (32.8%) than in the conventionally manipulated phase (26.8%). The abortion rate was also significantly lower during the light-protected period in IVF, resulting in a higher live birth rate. CONCLUSIONS: The implementation of light protection to reduce the embryotoxic wavelengths of light in IVF centers may improve the blastocyst development rate and embryo quality while maintaining embryo safety.

4.
Int J Mol Sci ; 25(2)2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38279271

RESUMO

Albinism is characterized by a variable degree of hypopigmentation affecting the skin and the hair, and causing ophthalmologic abnormalities. Its oculocutaneous, ocular and syndromic forms follow an autosomal or X-linked recessive mode of inheritance, and 22 disease-causing genes are implicated in their development. Our aim was to clarify the genetic background of a Hungarian albinism cohort. Using a 22-gene albinism panel, the genetic background of 11 of the 17 Hungarian patients was elucidated. In patients with unidentified genetic backgrounds (n = 6), whole exome sequencing was performed. Our investigations revealed a novel, previously unreported rare variant (N687S) of the two-pore channel two gene (TPCN2). The N687S variant of the encoded TPC2 protein is carried by a 15-year-old Hungarian male albinism patient and his clinically unaffected mother. Our segregational analysis and in vitro functional experiments suggest that the detected novel rare TPCN2 variant alone is not a disease-causing variant in albinism. Deep genetic analyses of the family revealed that the patient also carries a phenotype-modifying R305W variant of the OCA2 protein, and he is the only family member harboring this genotype. Our results raise the possibility that this digenic combination might contribute to the observed differences between the patient and the mother, and found the genetic background of the disease in his case.


Assuntos
Albinismo , Proteínas de Membrana Transportadoras , Humanos , Masculino , Adolescente , Hungria , Mutação , Proteínas de Membrana Transportadoras/metabolismo , Albinismo/genética , Patrimônio Genético
5.
Front Mol Neurosci ; 16: 1186279, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37965042

RESUMO

The tachykinin hemokinin-1 (HK-1) is involved in immunological processes, inflammation, and pain. Although the neurokinin 1 receptor (NK1R) is described as its main target, several effects are mediated by currently unidentified receptor(s). The role of HK-1 in pain is controversial, depending on the involvement of peripheral and central sensitization mechanisms in different models. We earlier showed the ability of HK-1 to activate the trigeminovascular system, but the mechanisms need to be clarified. Therefore, in this study, we investigated HK-1-induced transcriptomic alterations in cultured rat trigeminal ganglion (TRG) primary sensory neurons. HK-1 was applied for 6 or 24 h in 1 µM causing calcium-influx in these neurons, 500 nM not inducing calcium-entry was used for comparison. Next-generation sequencing was performed on the isolated RNA, and transcriptomic changes were analyzed to identify differentially expressed (DE) genes. Functional analysis was performed for gene annotation using the Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Reactome databases. NK1R and Neurokinin receptor 2 (NK2R) were not detected. Neurokinin receptor 3 (NK3R) was around the detection limit, which suggests the involvement of other NKR isoforms or other receptors in HK-1-induced sensory neuronal activation. We found protease-activated receptor 1 (PAR1) and epidermal growth factor receptor (EGFR) as DE genes in calcium signaling. The transmembrane protein anthrax toxin receptor 2 (ANTXR2), a potential novel pain-related target, was upregulated. Acid-sensing ion channel 1; 3 (Asic1,3), N-methyl-D-aspartate (NMDA) and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) glutamate receptors decreased, myelin production and maintenance related genes (Mbp, Pmp2, Myef2, Mpz) and GNDF changed by HK-1 treatment. Our data showed time and dose-dependent effects of HK-1 in TRG cell culture. Result showed calcium signaling as altered event, however, we did not detect any of NK receptors. Presumably, the activation of TRG neurons is independent of NK receptors. ANTXR2 is a potential new target, PAR-1 has also important role in pain, however their connection to HK-1 is unknown. These findings might highlight new targets or key mediators to solve how HK-1 acts on TRG.

6.
Int J Biol Macromol ; 253(Pt 5): 127157, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37778576

RESUMO

The rotifer-specific biopolymer, namely Rotimer, is a recently discovered group of the biomolecule family. Rotimer has an active role in the biofilm formation initiated by rotifers (e.g., Euchlanis dilatata or Adineta vaga) or in the female-male sexual interaction of monogononts. To understand the Ca2+- and polarity-dependent formation of this multifunctional viscoelastic material, it is essential to explore its molecular composition. The investigation of the rotifer-enhanced biofilm and Rotimer-inductor conglomerate (RIC) formation yielded several protein candidates to predict the Rotimer-specific main components. The exudate of E. dilatata males was primarily applied from different biopolimer-containing samples (biofilm or RIC). The advantage of males over females lies in their degenerated digestive system and simple anatomy. Thus, their exudate is less contaminated with food and endosymbiont elements. The sequenced and annotated genome and transcriptome of this species opened the way for identifying Rotimer proteins by mass spectrometry. The predicted rotifer-biopolymer forming components are SCO-spondins and 14-3-3 protein. The characteristics of Rotimer are similar to Reissner's fiber, which is found in the central nervous system of vertebrates and is mainly formed from SCO-spondins. This molecular information serves as a starting point for its interdisciplinary investigation and application in biotechnology, biomedicine, or neurodegeneration-related drug development.


Assuntos
Sistema Nervoso Central , Vertebrados , Animais , Feminino , Masculino , Sequência de Bases
7.
Cancers (Basel) ; 15(20)2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37894277

RESUMO

Non-small cell lung cancer is the predominant form of lung cancer and is associated with a poor prognosis. MiRNAs implicated in cancer initiation and progression can be easily detected in liquid biopsy samples and have the potential to serve as non-invasive biomarkers. In this study, we employed next-generation sequencing to globally profile miRNAs in serum samples from 71 early-stage NSCLC patients and 47 non-cancerous pulmonary condition patients. Preliminary analysis of differentially expressed miRNAs revealed 28 upregulated miRNAs in NSCLC compared to the control group. Functional enrichment analyses unveiled their involvement in NSCLC signaling pathways. Subsequently, we developed a gradient-boosting decision tree classifier based on 2588 miRNAs, which demonstrated high accuracy (0.837), sensitivity (0.806), and specificity (0.859) in effectively distinguishing NSCLC from non-cancerous individuals. Shapley Additive exPlanations analysis improved the model metrics by identifying the top 15 miRNAs with the strongest discriminatory value, yielding an AUC of 0.96 ± 0.04, accuracy of 0.896, sensitivity of 0.884, and specificity of 0.903. Our study establishes the potential utility of a non-invasive serum miRNA signature as a supportive tool for early detection of NSCLC while also shedding light on dysregulated miRNAs in NSCLC biology. For enhanced credibility and understanding, further validation in an independent cohort of patients is warranted.

8.
Int J Mol Sci ; 24(17)2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37686123

RESUMO

Non-small cell lung cancer (NSCLC) encompasses distinct histopathological subtypes, namely adenocarcinoma (AC) and squamous cell lung carcinoma (SCC), which require precise differentiation for effective treatment strategies. In this study, we present a novel molecular diagnostic model that integrates tissue-specific expression profiles of microRNAs (miRNAs) obtained through next-generation sequencing (NGS) to discriminate between AC and SCC subtypes of NSCLC. This approach offers a more comprehensive and precise molecular characterization compared to conventional methods such as histopathology or immunohistochemistry. Firstly, we identified 31 miRNAs with significant differential expression between AC and SCC cases. Subsequently, we constructed a 17-miRNA signature through rigorous multistep analyses, including LASSO/elastic net regression. The signature includes both upregulated miRNAs (hsa-miR-326, hsa-miR-450a-5p, hsa-miR-1287-5p, hsa-miR-556-5p, hsa-miR-542-3p, hsa-miR-30b-5p, hsa-miR-4728-3p, hsa-miR-450a-1-3p, hsa-miR-375, hsa-miR-147b, hsa-miR-7705, and hsa-miR-653-3p) and downregulated miRNAs (hsa-miR-944, hsa-miR-205-5p, hsa-miR-205-3p, hsa-miR-149-5p, and hsa-miR-6510-3p). To assess the discriminative capability of the 17-miRNA signature, we performed receiver operating characteristic (ROC) curve analysis, which demonstrated an impressive area under the curve (AUC) value of 0.994. Our findings highlight the exceptional diagnostic performance of the miRNA signature as a stratifying biomarker for distinguishing between AC and SCC subtypes in lung cancer. The developed molecular diagnostic model holds promise for providing a more accurate and comprehensive molecular characterization of NSCLC, thereby guiding personalized treatment decisions and improving clinical management and prognosis for patients.


Assuntos
Adenocarcinoma , Carcinoma Pulmonar de Células não Pequenas , Carcinoma de Células Escamosas , Neoplasias Pulmonares , MicroRNAs , Humanos , Carcinoma Pulmonar de Células não Pequenas/diagnóstico , Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , MicroRNAs/genética
9.
Front Oncol ; 13: 1224733, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37746254

RESUMO

Background: The clinical and genetic heterogeneity of diffuse large B-cell lymphoma (DLBCL) presents distinct challenges in predicting response to therapy and overall prognosis. The main objective of this study was to assess the application of the immunohistochemistry- and interphase fluorescence in situ hybridization (FISH)-based molecular markers in the diagnosis of DLBCL and its prognostic value in patients treated with rituximab-based immunochemotherapy. Methods: This is a multicenter, retrospective study, which analyzed data from 7 Hungarian hematology centers. Eligible patients were adults, had a histologically confirmed diagnosis of DLBCL, were treated with rituximab-based immunochemotherapy in the first line, and had available clinicopathological data including International Prognostic Index (IPI). On the specimens, immunohistochemistry and FISH methods were performed. Germinal center B-cell like (GCB) and non-GCB subtypes were classified by the Hans algorithm. Outcomes included overall survival (OS), event-free survival (EFS), and EFS at 2 years (EFS24). For survival analysis, we used Kaplan-Meier curves with the log-rank test and multivariate Cox regression. Results: A total of 247 DLBCL cases were included. Cases were positive for MYC, BCL2, BCL6, and MUM1 expression in 52.1%, 66.2%, 72.6%, and 77.8%, respectively. BCL6 translocation, BCL2 gene copy number (GCN) gain, IGH::MYC translocation, MYC GCN gain, IGH::BCL2 translocation, and BCL6 GCN gain were detected in 21.4%, 14.1%, 7.3%, 1.8%, 7.3%, and 0.9%, respectively. At a median follow-up of 52 months, 140 patients (56.7%) had disease progression or relapse. The Kaplan-Meier estimate for EFS24 was 56.2% (CI: 50.4-62.8%). In univariate analysis, only IPI and BCL6 expression were significant predictors of both OS and EFS, whereas MUM1 predicted EFS only. In multivariate analysis, the IPI score was a significant independent negative, whereas MIB-1 and BCL6 protein expressions were significant independent positive predictors of both OS and EFS. Conclusion: In our study, we found that only IPI, BCL6 protein expression and MIB-1 protein expression are independent predictors of survival outcomes in DLBCL. We did not find any difference in survival by GCB vs. non-GCB subtypes. These findings may improve prognostication in DLBCL and can contribute to designing further research in the area.

10.
Neurochem Res ; 48(11): 3430-3446, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37466802

RESUMO

The degenerative retinal disorders characterized by progressive cell death and exacerbating inflammation lead ultimately to blindness. The ubiquitous neuropeptide, PACAP38 is a promising therapeutic agent as its proliferative potential and suppressive effect on microglia might enable cell replacement and attenuate inflammation, respectively. Our previous finding that PACAP38 caused a marked increase of the amacrine cells in the adult (1-year-old) mouse retina, served as a rationale of the current study. We aimed to determine the proliferating elements and the inflammatory status of the PACAP38-treated retina. Three months old mice were intravitreally injected with 100 pmol PACAP38 at 3 months intervals (3X). Retinas of 1-year-old animals were dissected and effects on cell proliferation, and expression of inflammatory regulators were analyzed. Interestingly, both mitogenic and anti-mitogenic actions were detected after PACAP38-treatment. Further analysis of the mitogenic effect revealed that proliferating cells include microglia, endothelial cells, and neurons of the ganglion cell layer but not amacrine cells. Furthermore, PACAP38 stimulated retinal microglia to polarize dominantly into M2-phenotype but also might cause subsequent angiogenesis. According to our results, PACAP38 might dampen pro-inflammatory responses and help tissue repair by reprogramming microglia into an M2 phenotype, nonetheless, with angiogenesis as a warning side effect.


Assuntos
Microglia , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase , Camundongos , Animais , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/farmacologia , Adenilil Ciclases , Células Endoteliais , Retina
11.
Antibiotics (Basel) ; 12(3)2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36978346

RESUMO

Klebsiella pneumoniae is an opportunistic pathogen that frequently causes nosocomial and community-acquired (CA) infections. Until now, a limited number of studies has been focused on the analyses of changes affecting the virulence attributes. Genotypic and phenotypic methods were used to characterise the 39 clinical K. pneumoniae isolates; all belonged to the pan-drug resistant, widespread clone ST 15 and expressed the K24 capsule. PFGE has revealed that the isolates could be divided into three distinct genomic clusters. All isolates possessed allS and uge genes, known to contribute to the virulence of K. pneumoniae and 10.25% of the isolates showed hypermucoviscosity, 94.87% produced type 1 fimbriae, 92.3% produced type 3 fimbriae, and 92.3% were able to produce biofilm. In vivo persistence could be supported by serum resistance 46.15%, enterobactin (94.87%) and aerobactin (5.12%) production and invasion of the INT407 and T24 cell lines. Sequence analysis of the whole genomes of the four representative strains 11/3, 50/1, 53/2 and 53/3 has revealed high sequence homology to the reference K. pneumoniae strain HS11286. Our results represent the divergence of virulence attributes among the isolates derived from a common ancestor clone ST 15, in an evolutionary process that occurred both in the hospital and in the community.

12.
Nat Microbiol ; 8(3): 410-423, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36759752

RESUMO

Functional metagenomics is a powerful experimental tool to identify antibiotic resistance genes (ARGs) in the environment, but the range of suitable host bacterial species is limited. This limitation affects both the scope of the identified ARGs and the interpretation of their clinical relevance. Here we present a functional metagenomics pipeline called Reprogrammed Bacteriophage Particle Assisted Multi-species Functional Metagenomics (DEEPMINE). This approach combines and improves the use of T7 bacteriophage with exchanged tail fibres and targeted mutagenesis to expand phage host-specificity and efficiency for functional metagenomics. These modified phage particles were used to introduce large metagenomic plasmid libraries into clinically relevant bacterial pathogens. By screening for ARGs in soil and gut microbiomes and clinical genomes against 13 antibiotics, we demonstrate that this approach substantially expands the list of identified ARGs. Many ARGs have species-specific effects on resistance; they provide a high level of resistance in one bacterial species but yield very limited resistance in a related species. Finally, we identified mobile ARGs against antibiotics that are currently under clinical development or have recently been approved. Overall, DEEPMINE expands the functional metagenomics toolbox for studying microbial communities.


Assuntos
Bacteriófagos , Genes Bacterianos , Antibacterianos/farmacologia , Metagenômica , Bacteriófagos/genética , Bactérias/genética
13.
Pain ; 164(2): e103-e115, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36638307

RESUMO

ABSTRACT: Tissue injuries, including burns, are major causes of death and morbidity worldwide. These injuries result in the release of intracellular molecules and subsequent inflammatory reactions, changing the tissues' chemical milieu and leading to the development of persistent pain through activating pain-sensing primary sensory neurons. However, the majority of pain-inducing agents in injured tissues are unknown. Here, we report that, amongst other important metabolite changes, lysophosphatidylcholines (LPCs) including 18:0 LPC exhibit significant and consistent local burn injury-induced changes in concentration. 18:0 LPC induces immediate pain and the development of hypersensitivities to mechanical and heat stimuli through molecules including the transient receptor potential ion channel, vanilloid subfamily, member 1, and member 2 at least partly via increasing lateral pressure in the membrane. As levels of LPCs including 18:0 LPC increase in other tissue injuries, our data reveal a novel role for these lipids in injury-associated pain. These findings have high potential to improve patient care.


Assuntos
Lisofosfatidilcolinas , Dor , Humanos , Lisofosfatidilcolinas/toxicidade
14.
J Sleep Res ; 32(2): e13746, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36217837

RESUMO

Ghrelin, a regulator of food intake and energy expenditure, has been shown to be associated with insufficient sleep. The goal of the present study was to investigate the effect of a single night of total sleep deprivation on fasting saliva ghrelin and on nocturnal variation of saliva ghrelin concentration. A further aim of the study was to investigate the influence of body mass index on changes in saliva ghrelin levels. Altogether 35 adolescents (18 boys; age: 13.8 ± 1.14 years) were studied on two subsequent days (sleep and total sleep deprivation). Saliva samples were collected during the two experimental nights at 21:00 hours, 01:00 hours and 06:00 hours. Total-ghrelin concentration showed a continuous increase from the evening until 06:00 hours. This increase was blunted significantly (p = 0.003) by total sleep deprivation. Total-ghrelin level was significantly lower (p = 0.02) during total sleep deprivation at 06:00 hours (median 403.6 pg ml-1 ; 95% confidence interval: 343.1-468.9 pg ml-1 ) as compared with values during the sleep condition (median 471.2 pg ml-1 ; 95% confidence interval: 205.4-1578.7 pg ml-1 ). Acyl-ghrelin levels did not present any change at the three time points, and were not affected by total sleep deprivation. Stratifying the study population according to body mass index (normal weight and overweight/obese groups), the blunting effect of total sleep deprivation was more pronounced in the obese/overweight group (sleep: median 428.2 pg ml-1 ; 95% confidence interval: 331.3-606.9 pg ml-1 versus total sleep deprivation: median 333.1 pg ml-1 ; 95% confidence interval: 261.5-412.9 pg ml-1 ; p = 0.0479). Saliva total-ghrelin concentrations gradually increased during the night, and total sleep deprivation significantly blunted this increase. This blunting effect was mainly observed in subjects with overweight/obesity. The physiological and clinical implications of the present observation are to be clarified by further studies.


Assuntos
Grelina , Privação do Sono , Masculino , Humanos , Adolescente , Criança , Privação do Sono/complicações , Sobrepeso/complicações , Saliva , Obesidade/complicações , Sono/fisiologia
15.
Plants (Basel) ; 11(23)2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36501272

RESUMO

Physical mutagens are a powerful tool used for genetic research and breeding for over eight decades. Yet, when compared to chemical mutagens, data sets on the effect of different mutagens and dosages on the spectrum and density of induced mutations remain lacking. To address this, we investigated the landscape of mutations induced by gamma and X-ray radiation in the most widely cultivated crop species: rice. A mutant population of a tropical upland rice, Oryza sativa L., was generated and propagated via self-fertilization for seven generations. Five dosages ranging from 75 Gy to 600 Gy in both X-ray and gamma-irradiated material were applied. In the process of a forward genetic screens, 11 unique rice mutant lines showing phenotypic variation were selected for mutation analysis via whole-genome sequencing. Thousands of candidate mutations were recovered in each mutant with single base substitutions being the most common, followed by small indels and structural variants. Higher dosages resulted in a higher accumulation of mutations in gamma-irradiated material, but not in X-ray-treated plants. The in vivo role of all annotated rice genes is yet to be directly investigated. The ability to induce a high density of single nucleotide and structural variants through mutagenesis will likely remain an important approach for functional genomics and breeding.

16.
Heliyon ; 8(11): e11731, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36425424

RESUMO

The Hunyadi family is one of the most influential families in the history of Central Europe in the 14th-16th centuries. The family's prestige was established by Johannes Hunyadi, a Turk-beater who rose to the position of governor of the Kingdom of Hungary. His second son, Matthias Hunyadi, became the elected ruler of the Kingdom of Hungary in 1458. The Hunyadi family had unknown origin. Moreover, Matthias failed to found a dynasty because of lacking a legitimate heir and his illegitimate son Johannes Corvinus was unable to obtain the crown. His grandson, Christophorus Corvinus, died in childhood, thus the direct male line of the family ended. In the framework of on interdisciplinary research, we have determined the whole genome sequences of Johannes Corvinus and Christophorus Corvinus by next-generation sequencing technology. Both of them carried the Y-chromosome haplogroup is E1b1b1a1b1a6a1c ∼, which is widespread in Eurasia. The father-son relationship was verified using the classical STR method and whole genome data. Christophorus Corvinus belongs to the rare, sporadically occurring T2c1+146 mitochondrial haplogroup, most frequent around the Mediterranean, while his father belongs to the T2b mitochondrial haplogroup, widespread in Eurasia, both are consistent with the known origin of the mothers. Archaeogenomic analysis indicated that the Corvinus had an ancient European genome composition. Based on the reported genetic data, it will be possible to identify all the other Hunyadi family member, whose only known grave site is known, but who are resting assorted with several other skeletons.

17.
J Headache Pain ; 23(1): 113, 2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36050647

RESUMO

BACKGROUND: Migraine is a primary headache with genetic susceptibility, but the pathophysiological mechanisms are poorly understood, and it remains an unmet medical need. Earlier we demonstrated significant differences in the transcriptome of migraineurs' PBMCs (peripheral blood mononuclear cells), suggesting the role of neuroinflammation and mitochondrial dysfunctions. Post-transcriptional gene expression is regulated by miRNA (microRNA), a group of short non-coding RNAs that are emerging biomarkers, drug targets, or drugs. MiRNAs are emerging biomarkers and therapeutics; however, little is known about the miRNA transcriptome in migraine, and a systematic comparative analysis has not been performed so far in migraine patients. METHODS: We determined miRNA expression of migraineurs' PBMC during (ictal) and between (interictal) headaches compared to age- and sex-matched healthy volunteers. Small RNA sequencing was performed from the PBMC, and mRNA targets of miRNAs were predicted using a network theoretical approach by miRNAtarget.com™. Predicted miRNA targets were investigated by Gene Ontology enrichment analysis and validated by comparing network metrics to differentially expressed mRNA data. RESULTS: In the interictal PBMC samples 31 miRNAs were differentially expressed (DE) in comparison to healthy controls, including hsa-miR-5189-3p, hsa-miR-96-5p, hsa-miR-3613-5p, hsa-miR-99a-3p, hsa-miR-542-3p. During headache attacks, the top DE miRNAs as compared to the self-control samples in the interictal phase were hsa-miR-3202, hsa-miR-7855-5p, hsa-miR-6770-3p, hsa-miR-1538, and hsa-miR-409-5p. MiRNA-mRNA target prediction and pathway analysis indicated several mRNAs related to immune and inflammatory responses (toll-like receptor and cytokine receptor signalling), neuroinflammation and oxidative stress, also confirmed by mRNA transcriptomics. CONCLUSIONS: We provide here the first evidence for disease- and headache-specific miRNA signatures in the PBMC of migraineurs, which might help to identify novel targets for both prophylaxis and attack therapy.


Assuntos
MicroRNAs , Transtornos de Enxaqueca , Cefaleia , Humanos , Leucócitos Mononucleares/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Transtornos de Enxaqueca/genética , Estresse Oxidativo/genética , RNA Mensageiro/metabolismo
18.
Biomedicines ; 10(9)2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36140275

RESUMO

BACKGROUND: Immune evasion in glioblastoma (GBM) shields cancer cells from cytotoxic immune response. METHODS: We investigated CpG methylation in promoters, genes, and pathways in 22 pairs of formalin-fixed paraffin-embedded sequential (FFPE) GBM using restricted resolution bisulfite sequencing (RRBS) and bioinformatic analyses. RESULTS: Gene ontology revealed hypermethylation in elements of the innate and adaptive immune system when recurrent GBM samples (GBMrec) were compared to control (CG) and primary GBM samples (GBMprim). Higher methylation levels of the IL-7 signaling pathway and response to IL-7 were found in GBMrec suggesting a progressive blockade of the IL-7 driven T cell response in sequential GBM. Analyses of the Cancer Genome Atlas array-based data confirmed hypermethylation of the IL-7 pathway in recurrent compared with primary GBM. We also quantified DNA CpG methylation in promoter and gene regions of the IL-7 ligand and IL-7 α-receptor subunit in individual samples of a large RRBS-based sequential cohort of GBM in a Viennese database and found significantly higher methylation levels in the IL-7 receptor α-subunit in GBMrec compared with GBMprim. CONCLUSIONS: This study revealed the progressive suppression of the IL-7 receptor-mediated pathway as a means of immune evasion by GBM and thereby highlighted it as a new treatment target.

19.
Vet Res Commun ; 46(4): 1355-1361, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36129562

RESUMO

In this study, the aetiological background of an outbreak of severe haemorrhagic gastroenteritis (HGE) in a colony of purebred Jack Russell Terriers vaccinated against CPV-2 in Hungary was investigated. Canine parvovirus 2 (CPV-2, Parvoviridae) and canine astrovirus (CaAstV, Astroviridae) co-infection was identified by viral metagenomics and next-generation sequencing (VM-NGS) methods from a rectal swab of an affected 7-week-old puppy. The complete coding sequence of CPV-2 strain FR1/CPV2-2021-HUN (ON733252) and the complete genome of CaAstV strain FR1/CaAstV-2021-HUN (ON733251) were determined by VM-NGS and PCR methods. Results of sequence and phylogenetic analyses showed that CPV-2 strain FR1/CPV2-2021-HUN was different from the applied vaccine strains and previously identified strains from Hungary but showed high sequence identity (> 99.8%) and close phylogenetic relationship to recently described "Asian-origin" CPV-2c strains from Italy. But, based on the single amino acid difference on position 426 of VP2 (Glu/Asp) between the study strain and the closest relatives, FR1/CPV2-2021-HUN belonged to the 2b antigenic type rather than 2c. The CaAstV strain FR1/CaAstV-2021-HUN showed close relationship with a CaAstV strain identified previously from a diarrhoeic dog in Hungary. Both viruses were continuously detectable by PCR in additional enteric samples, and the CPV-2 could also be detected in several (n = 32) tissue samples from 9 affected deceased puppies. Further comparative studies are necessary to confirm the role of the point mutation causing the change in the antigenic type of this "Asian-origin" CPV-2 and/or the role of CaAstV co-infection in the development and/or severity of (haemorrhagic) gastroenteritis among dogs vaccinated against CPV-2.


Assuntos
Astroviridae , Coinfecção , Doenças do Cão , Gastroenterite , Infecções por Parvoviridae , Parvoviridae , Parvovirus Canino , Cães , Animais , Parvovirus Canino/genética , Astroviridae/genética , Filogenia , Coinfecção/veterinária , Coinfecção/epidemiologia , Hungria/epidemiologia , Infecções por Parvoviridae/epidemiologia , Infecções por Parvoviridae/veterinária , Doenças do Cão/epidemiologia , Doenças do Cão/prevenção & controle , Gastroenterite/epidemiologia , Gastroenterite/prevenção & controle , Gastroenterite/veterinária , Surtos de Doenças
20.
Pharmacol Res ; 182: 106347, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35820612

RESUMO

Complex Regional Pain Syndrome (CRPS) represents severe chronic pain, hypersensitivity, and inflammation induced by sensory-immune-vascular interactions after a small injury. Since the therapy is unsatisfactory, there is a great need to identify novel drug targets. Unbiased transcriptomic analysis of the dorsal root ganglia (DRG) was performed in a passive transfer-trauma mouse model, and the predicted pathways were confirmed by pharmacological interventions. In the unilateral L3-5 DRGs 125 genes were differentially expressed in response to plantar incision and injecting IgG of CRPS patients. These are related to inflammatory and immune responses, cytokines, chemokines and neuropeptides. Pathway analysis revealed the involvement of Tumor Necrosis Factor (TNF) and Janus kinase (JAK-STAT) signaling. The relevance of these pathways was proven by abolished CRPS IgG-induced hyperalgesia and reduced microglia and astrocyte markers in pain-associated central nervous system regions after treatment with the soluble TNF alpha receptor etanercept or JAK inhibitor tofacitinib. These results provide the first evidence for CRPS-related neuroinflammation and abnormal cytokine signaling at the level of the primary sensory neurons in a translational mouse model and suggest that etanercept and tofacitinib might have drug repositioning potentials for CRPS-related pain.


Assuntos
Dor Crônica , Síndromes da Dor Regional Complexa , Animais , Síndromes da Dor Regional Complexa/tratamento farmacológico , Síndromes da Dor Regional Complexa/patologia , Modelos Animais de Doenças , Etanercepte/farmacologia , Etanercepte/uso terapêutico , Gânglios Espinais/patologia , Imunoglobulina G , Janus Quinases , Camundongos , Fatores de Transcrição STAT , Transdução de Sinais , Transcriptoma , Fator de Necrose Tumoral alfa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA