Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 62(51): e202313848, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-37917119

RESUMO

Evaluation of the relative rates of the cobalt-catalyzed C(sp2 )-C(sp3 ) Suzuki-Miyaura cross-coupling between the neopentylglycol ester of 4-fluorophenylboronic acid and N-Boc-4-bromopiperidine established that smaller N-alkyl substituents on the phenoxyimine (FI) supporting ligand accelerated the overall rate of the reaction. This trend inspired the design of optimal cobalt catalysts with phenoxyoxazoline (FOx) and phenoxythiazoline (FTz) ligands. An air-stable cobalt(II) precatalyst, (FTz)CoBr(py)3 was synthesized and applied to the cross-coupling of an indole-5-boronic ester nucleophile with a piperidine-4-bromide electrophile that is relevant to the synthesis of reported toll-like receptor (TLR) 7/8 antagonist molecules including afimetoran. Addition of excess KOMe⋅B(Oi Pr)3 improved catalyst lifetime due to attenuation of alkoxide basicity that otherwise resulted in demetallation of the FI chelate. A first-order dependence on the cobalt precatalyst and a saturation regime in nucleophile were observed, supporting turnover-limiting transmetalation and the origin of the observed trends in N-imine substitution.

2.
J Am Chem Soc ; 145(31): 17029-17041, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37490763

RESUMO

The mechanism of phenoxyimine (FI)-cobalt-catalyzed C(sp2)-C(sp3) Suzuki-Miyaura cross-coupling was studied using a combination of kinetic measurements and catalytic and stoichiometric experiments. A series of dimeric (FI)cobalt(II) bromide complexes, [(4-CF3PhFI)CoBr]2, [(4-OMePhFI)CoBr]2, and [(2,6-diiPrPhFI)CoBr]2, were isolated and characterized by 1H and 19F NMR spectroscopies, solution and solid-state magnetic susceptibility, electron paramagnetic resonance (EPR) spectroscopy, X-ray crystallography, and diffusion-ordered NMR spectroscopy (DOSY). One complex, [(4-CF3PhFI)CoBr]2, was explored as a single-component precatalyst for C(sp2)-C(sp3) Suzuki-Miyaura cross-coupling. Addition of potassium methoxide to [(4-CF3PhFI)CoBr]2 generated the corresponding (FI)cobalt(II) methoxide complex as determined by 1H and 19F NMR and EPR spectroscopies. These spectroscopic signatures were used to identify this compound as the resting state during catalytic C(sp2)-C(sp3) coupling. Variable time normalization analysis (VTNA) of in situ catalytic 19F NMR spectroscopic data was used to establish an experimental rate law that was first-order in a (FI)cobalt(II) precatalyst, zeroth-order in the alkyl halide, and first-order in an activated potassium methoxide-aryl boronate complex. These findings are consistent with turnover-limiting transmetalation that occurs prior to activation of the alkyl bromide electrophile. The involvement of boronate intermediates in transmetalation was corroborated by Hammett studies of electronically differentiated aryl boronic esters. Together, a cobalt(II)/cobalt(III) catalytic cycle was proposed that proceeds through a "boronate"-type mechanism.

3.
ACS Catal ; 12(3): 1905-1918, 2022 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-36034100

RESUMO

Cobalt(II) halides in combination with phenoxy-imine (FI) ligands generated efficient precatalysts in situ for the C(sp2)-C(sp3) Suzuki-Miyaura cross coupling between alkyl bromides and neopentylglycol (hetero)arylboronic esters. The protocol enabled efficient C-C bond formation with a host of nucleophiles and electrophiles (36 examples, 34-95%) with precatalyst loadings of 5 mol%. Studies with alkyl halide electrophiles that function as radical clocks support the intermediacy of alkyl radicals during the course of the catalytic reaction. The improved performance of the FI-cobalt catalyst was correlated with decreased lifetimes of cage-escaped radicals as compared to diamine-type ligands. Studies of the phenoxy(imine)-cobalt coordination chemistry validate the L,X interaction leading to the discovery of an optimal, well defined, air-stable mono-FI cobalt(II) precatalyst structure.

4.
J Am Chem Soc ; 144(3): 1464-1472, 2022 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-35020391

RESUMO

Chlorine radicals readily activate C-H bonds, but the high reactivity of these intermediates precludes their use in regioselective C-H functionalization reactions. We demonstrate that the secondary coordination sphere of a metal complex can confine photoeliminated chlorine radicals and afford steric control over their reactivity. Specifically, a series of iron(III) chloride pyridinediimine complexes exhibit activity for photochemical C(sp3)-H chlorination and bromination with selectivity for primary and secondary C-H bonds, overriding thermodynamic preference for weaker tertiary C-H bonds. Transient absorption spectroscopy reveals that Cl· remains confined through formation of a Cl·|arene complex with aromatic groups on the pyridinediimine ligand. Furthermore, photocrystallography confirms that this selectivity arises from the generation of Cl· within the steric environment defined by the iron secondary coordination sphere.

5.
J Am Chem Soc ; 143(16): 6060-6064, 2021 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-33861577

RESUMO

The activation of C-H bonds requires the generation of extremely reactive species, which hinders the study of this reaction and its key intermediates. To overcome this challenge, we synthesized an iron(III) chloride-pyridinediimine complex that generates a chlorine radical proximate to reactive C-H bonds upon irradiation with light. Transient spectroscopy confirms the formation of a Cl·|arene complex, which then activates C-H bonds on the PDI ligand to yield HCl and a carbon-centered radical as determined by photocrystallography. First-principles molecular dynamics-density functional theory calculations reveal the trajectory for the formation of a Cl·|arene intermediate. Together, these experimental and computational results show the complete reaction profile for the preferential activation of a C-H bond in the solid state.

6.
Dalton Trans ; 47(34): 11903-11908, 2018 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-29942938

RESUMO

The mechanism of oxygen activation at a dicobalt bis-µ-hydroxo core is probed by the implementation of synthetic methods to isolate reaction intermediates. Reduction of a dicobalt(iii,iii) core ligated by the polypyridyl ligand dipyridylethane naphthyridine (DPEN) by two electrons and subsequent protonation result in the release of one water moiety to furnish a dicobalt(ii,ii) center with an open binding site. This reduced core may be independently isolated by chemical reduction. Variable-temperature 1H NMR and SQUID magnetometry reveal the reduced dicobalt(ii,ii) intermediate to consist of two low spin Co(ii) centers coupled antiferromagnetically. Binding of O2 to the open coordination site of the dicobalt(ii,ii) core results in the production of an oxygen adduct, which is proposed to be a dicobalt(iii,iii) peroxo. Electrochemical studies show that the addition of two electrons results in cleavage of the O-O bond.

7.
Chem Sci ; 9(19): 4524-4528, 2018 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-29896395

RESUMO

A Mn(iv) complex featuring a terminal oxo ligand, [MnIV(O)(ditox)3][K(15-C-5)2] (3; ditox = t Bu2MeCO-, 15-C-5 = 15-crown-5-ether) has been isolated and structurally characterized. Treatment of the colorless precursor [MnII(ditox)3][K(15-C-5)2] (2) with iodosobenzene affords 3 as a green free-flowing powder in high yields. The X-ray crystal structure of 3 reveals a pseudotetrahedral geometry about the central Mn, which features a terminal oxo (d(Mn-Oterm = 1.628(2) Å)). EPR spectroscopy, SQUID magnetometry, and Evans method magnetic susceptibility indicate that 3 consists of a high-spin S = 3/2 Mn(iv) metal center. 3 promotes C-H bond activation by a hydrogen atom abstraction. The [MnIV(O)(ditox)3]- furnishes a model for the proposed terminal oxo of the unique manganese of the oxygen evolving complex of photosystem II.

8.
Chem Sci ; 9(1): 160-174, 2018 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-29629084

RESUMO

Alkyldiamine-functionalized variants of the metal-organic framework Mg2(dobpdc) (dobpdc4- = 4,4'-dioxidobiphenyl-3,3'-dicarboxylate) are promising for CO2 capture applications owing to their unique step-shaped CO2 adsorption profiles resulting from the cooperative formation of ammonium carbamate chains. Primary,secondary (1°,2°) alkylethylenediamine-appended variants are of particular interest because of their low CO2 step pressures (≤1 mbar at 40 °C), minimal adsorption/desorption hysteresis, and high thermal stability. Herein, we demonstrate that further increasing the size of the alkyl group on the secondary amine affords enhanced stability against diamine volatilization, but also leads to surprising two-step CO2 adsorption/desorption profiles. This two-step behavior likely results from steric interactions between ammonium carbamate chains induced by the asymmetrical hexagonal pores of Mg2(dobpdc) and leads to decreased CO2 working capacities and increased water co-adsorption under humid conditions. To minimize these unfavorable steric interactions, we targeted diamine-appended variants of the isoreticularly expanded framework Mg2(dotpdc) (dotpdc4- = 4,4''-dioxido-[1,1':4',1''-terphenyl]-3,3''-dicarboxylate), reported here for the first time, and the previously reported isomeric framework Mg-IRMOF-74-II or Mg2(pc-dobpdc) (pc-dobpdc4- = 3,3'-dioxidobiphenyl-4,4'-dicarboxylate, pc = para-carboxylate), which, in contrast to Mg2(dobpdc), possesses uniformally hexagonal pores. By minimizing the steric interactions between ammonium carbamate chains, these frameworks enable a single CO2 adsorption/desorption step in all cases, as well as decreased water co-adsorption and increased stability to diamine loss. Functionalization of Mg2(pc-dobpdc) with large diamines such as N-(n-heptyl)ethylenediamine results in optimal adsorption behavior, highlighting the advantage of tuning both the pore shape and the diamine size for the development of new adsorbents for carbon capture applications.

9.
J Org Chem ; 82(23): 12933-12938, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-29121772

RESUMO

A concise benchtop and scalable synthesis of pyridine-diimine (PDI) ligand frameworks is presented using inexpensive commercial starting materials as opposed to previous syntheses of these ligands, which have confronted long and tedious routes that employ toxic and often difficult to scale pyrophoric reagents. The streamlined synthesis is derived from the facile delivery of 4-functionalized diacetylpyridines from a Minisci reaction using pyruvic acid, silver nitrate, and persulfate. As the PDI ligand scaffold has been adopted for a range of catalytic applications, the ability to modulate the electronic properties of the ligand with facility may be useful for optimizing a variety of catalytic transformations.

10.
Nature ; 519(7543): 303-8, 2015 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-25762144

RESUMO

The process of carbon capture and sequestration has been proposed as a method of mitigating the build-up of greenhouse gases in the atmosphere. If implemented, the cost of electricity generated by a fossil fuel-burning power plant would rise substantially, owing to the expense of removing CO2 from the effluent stream. There is therefore an urgent need for more efficient gas separation technologies, such as those potentially offered by advanced solid adsorbents. Here we show that diamine-appended metal-organic frameworks can behave as 'phase-change' adsorbents, with unusual step-shaped CO2 adsorption isotherms that shift markedly with temperature. Results from spectroscopic, diffraction and computational studies show that the origin of the sharp adsorption step is an unprecedented cooperative process in which, above a metal-dependent threshold pressure, CO2 molecules insert into metal-amine bonds, inducing a reorganization of the amines into well-ordered chains of ammonium carbamate. As a consequence, large CO2 separation capacities can be achieved with small temperature swings, and regeneration energies appreciably lower than achievable with state-of-the-art aqueous amine solutions become feasible. The results provide a mechanistic framework for designing highly efficient adsorbents for removing CO2 from various gas mixtures, and yield insights into the conservation of Mg(2+) within the ribulose-1,5-bisphosphate carboxylase/oxygenase family of enzymes.


Assuntos
Aminas/química , Dióxido de Carbono/química , Dióxido de Carbono/isolamento & purificação , Sequestro de Carbono , Adsorção , Efeito Estufa/prevenção & controle , Magnésio/metabolismo , Ribulose-Bifosfato Carboxilase/química , Ribulose-Bifosfato Carboxilase/metabolismo , Temperatura , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA