Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 366: 143434, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39357654

RESUMO

The increased use of nanoparticles (NPs) is expected to raise their presence in the marine ecosystem, which is considered as the final destination of released NPs. This study investigated the toxicity of Cr2O3 (42 nm) and Al2O3 (38 nm) NPs (1, 2.5, and 5 mg/L) on the digestive glands of Stramonita haemastoma for 7, 14, and 28 days by oxidative stress biomarkers, neurotoxicity indicator assessment, and histological study. Results revealed an imbalance in antioxidants at all periods. Following 7 days, both NPs caused GSH depletion with marked impacts from Al2O3. GPx, CAT, and AChE were also decreased with the highest changes induced by Cr2O3. Both NPs inducted GSH and GST levels on days 14 and 28, with more effects from Cr2O3 exposure. GPx, AChE, and MDA induction were observed on day 28, while MT varied through NPs and time, with imbalanced levels at all periods noticed, SOD was mostly not affected. Histology revealed alterations including necrosis and interstitial deteriorations; quantitative analysis through the histological condition index revealed dose-dependent impacts, with the highest values attributed to Cr2O3 exposure. While PCA revealed the co-response of GSH, GST, GPx, CAT, and AchE with separated MT responses. This study reported oxidative stress induction through a multi-biomarkers investigation, neurotoxicity, and histological damages in the digestive gland of S. haemastoma following Cr2O3 and Al2O3 NPs exposure.

2.
Polymers (Basel) ; 16(12)2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38932087

RESUMO

Fouling and biofouling remain significant challenges in seawater desalination plants. One practical approach to address these issues is to develop anti-biofouling membranes. Therefore, novel hybrid zinc phthalocyanine/polyvinylidene fluoride-co-hexafluoropropylene (Zn(4-PPOx)4Pc/PVDF-HFP) membranes were prepared by electrospinning to evaluate their properties against biofouling. The hybrid nanofiber membrane was characterized by atomic force microscopy (AFM), attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy, and contact angle measurements. The theoretical calculations of PVDF-HFP, Zn(4-PPOx)4Pc), and Zn(4-PPOx)4Pc/PVDF-HFP nanofibers were performed using a hybrid functional RB3LYP and the 6-31 G (d,p) basis set, employing Gaussian 09. DFT calculations illustrated that the calculated physical and electronic parameters ensured the feasibility of the interaction of PVDF-HFP with Zn(4-PPOx)4Pc via a halogen-hydrogen bond, resulting in a highly stable and remarkably reactive structure. Moreover, molecular electrostatic potential (MEP) maps were drawn to identify the reactive regions of the Zn(4-PPOx)4Pc and PVDF-HFP/Zn(4-PPOx)4Pc nanofibers. Molecular docking analysis revealed that Zn(4-PPOx)4Pc has highest binding affinity (-8.56 kcal/mol) with protein from S. aureus (1N67) mainly with ten amino acids (ASP405, LYS374, GLU446, ASN406, ALA441, TYR372, LYS371, TYR448, LYS374, and ALA442). These findings highlight the promising potential of Zn(4-PPOx) 4Pc/PVDF-HFP nanocomposite membranes in improving the efficiency of water desalination by reducing biofouling and providing antibacterial properties.

3.
Heliyon ; 9(10): e20927, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37876422

RESUMO

The brines from desalination plants need to be disposed of due to their strong impact on the environment. Membrane operations, like direct contact membrane distillation (DCMD), provide a possible solution to reduce the amount of brine while producing further desalinated water. In this study, an exergy analysis of a laboratory membrane distillation unit working with brines from reverse osmosis (RO) is analyzed. Exergy analysis enables us to assess the energy lost in entropy generation; therefore, it commits us to identify the less efficient configuration of the DCMD module. Unlike other exergy analyses for distillation, in this study, only module inputs and outputs were incorporated. The exergy is calculated at different infeed temperatures, for both in-out and out-in feed configurations of hollow fiber membrane modules. Also, exergy difference, flux, and exergetic efficiency for both configurations are calculated. At high feed temperatures, there is an increase in both flux and exergy change, which increases water recovery and feed side exergetic efficiency. The highest flux that is obtained in the out-in configuration is 13.3 kg/h.m2 while it is only 6.23 kg/h.m2 for the in-out system of the module. Also, these exergy changes and feed efficiencies are higher in the out-in module configuration than in the in-out module configuration. Conversely, the exergetic efficiency of the permeate is higher at lower feed temperatures, due to the lower accumulation of concentration polarization along the membrane wall.

4.
Polymers (Basel) ; 15(12)2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37376352

RESUMO

The major challenge for membrane distillation (MD) is the membrane wetting resistance induced by pollutants in the feed solution. The proposed solution for this issue was to fabricate membranes with hydrophobic properties. Hydrophobic electrospun poly (vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) nanofiber membranes were produced for brine treatment using the direct-contact membrane distillation (DCMD) technique. These nanofiber membranes were prepared from three different polymeric solution compositions to study the effect of solvent composition on the electrospinning process. Furthermore, the effect of the polymer concentration was investigated by preparing polymeric solutions with three different polymer percentages: 6, 8, and 10%. All of the nanofiber membranes obtained from electrospinning were post-treated at varying temperatures. The effects of thickness, porosity, pore size, and liquid entry pressure (LEP) were studied. The hydrophobicity was determined using contact angle measurements, which were investigated using optical contact angle goniometry. The crystallinity and thermal properties were studied using DSC and XRD, while the functional groups were studied using FTIR. The morphological study was performed with AMF and described the roughness of nanofiber membranes. Finally, all of the nanofiber membranes had enough of a hydrophobic nature to be used in DCMD. A PVDF membrane filter disc and all nanofiber membranes were applied in DCMD to treat brine water. The resulting water flux and permeate water quality were compared, and it was discovered that all of the produced nanofiber membranes showed good behavior with varying water flux, but the salt rejection was greater than 90%. A membrane prepared from DMF/acetone 5-5 with 10% PVDF-HFP provided the perfect performance, with an average water flux of 44 kg.m-2.h-1 and salt rejection of 99.8%.

5.
Heliyon ; 9(2): e12810, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36793956

RESUMO

Water is a critical component for humans to survive, especially in arid lands or areas where fresh water is scarce. Hence, desalination is an excellent way to effectuate the increasing water demand. Membrane distillation (MD) technology entails a membrane-based non-isothermal prominent process used in various applications, for instance, water treatment and desalination. It is operable at low temperature and pressure, from which the heat demand for the process can be sustainably sourced from renewable solar energy and waste heat. In MD, the water vapors are gone through the membrane's pores and condense at permeate side, rejecting dissolved salts and non-volatile substances. However, the efficacy of water and biofouling are the main challenges for MD due to the lack of appropriate and versatile membrane. Numerous researchers have explored different membrane composites to overcome the above-said issue, and attempt to develop efficient, elegant, and biofouling-resistant novel membranes for MD. This review article addresses the 21st-century water crises, desalination technologies, principles of MD, the different properties of membrane composites alongside compositions and modules of membranes. The desired membrane characteristics, MD configurations, role of electrospinning in MD, characteristics and modifications of membranes used for MD are also highlighted in this review.

6.
Plants (Basel) ; 11(16)2022 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-36015480

RESUMO

Xylem vessels are essential pivotal organs in bulk hydraulic flow through the whole woody plant. However, environmental constraints generate disagreements in xylem structures, which are characterized by air emboli and occlusions formations, compromising water conductivity in grapevines. The aim of this work was to explore xylem morphology dynamics through the xylem sap flow of five Tunisian grapevine cultivars during the natural bleeding sap periods of 2019, 2021, and 2022. In fact, Sakasly, Khamri, Hencha, Razegui1, and Razegui2 rain-fed grapevine cultivars revealed differential responses towards xylem sap movement. The results demonstrated that the xylem sap flow was significantly more abundant in 2019 than 2021 and 2022 bleeding sap campaigns. A variation was revealed between the cultivars regarding the xylem sap flow. In fact, Sakasly gave the best xylem flow during the three campaigns. Razegui1 and Razegui2 registered approximately similar xylem sap flow, while Hencha and Khamri present the lowest sap fluxes during the three campaigns. Moreover, several vascular occlusions forms were identified from stem cross sections using environmental scanning electron microscopy (ESEM), including tyloses, gels, starch, and gum deposits. The highest occlusion number was observed in Sakasly, Razegui1, and Razegui2 cultivars. Among different biogenic calcium shapes, several were observed for the first time in grapevine, including multi-faceted druse, cubic, crystalline sand, styloids, spherical, or drop-like structures. Considering their lower flow and totally blocked vessels, both Hencha and Khamri confirmed their susceptibility to environmental constraints. However, Sakasly, Razegui1, and Razegui2 cultivars presented higher tolerance according to their sap flow and xylem morphology.

7.
Polymers (Basel) ; 13(15)2021 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-34372182

RESUMO

Tamisolve® NxG, a well-known non-toxic solvent, was used for poly(vinylidene fluoride) (PVDF) membranes preparation via a non-solvent-induced phase separation (NIPS) procedure with water as a coagulation bath. Preliminary investigations, related to the study of the physical/chemical properties of the solvent, the solubility parameters, the gel transition temperature and the viscosity of the polymer-solvent system, confirmed the power of the solvent to solubilize PVDF polymer for membranes preparation. The role of polyvinylpyrrolidone (PVP) and/or poly(ethylene glycol) (PEG), as pore former agents in the dope solution, was studied along with different polymer concentrations (10 wt%, 15 wt% and 18 wt%). The produced membranes were then characterized in terms of morphology, thickness, porosity, contact angle, atomic force microscopy (AFM) and infrared spectroscopy (ATR-FTIR). Pore size measurements, pore size distribution and water permeability (PWP) tests placed the developed membranes in the ultrafiltration (UF) and microfiltration (MF) range. Finally, PVDF membrane performances were investigated in terms of rejection (%) and permeability recovery ratio (PRR) using methylene blue (MB) in water solution to assess their potential application in separation and purification processes.

8.
Membranes (Basel) ; 8(2)2018 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-29614045

RESUMO

The use of membrane-based technologies has been applied for water treatment applications; however, the limitations of conventional polymeric membranes have led to the addition of inorganic fillers to enhance their performance. In recent years, nanocomposite membranes have greatly attracted the attention of scientists for water treatment applications such as wastewater treatment, water purification, removal of microorganisms, chemical compounds, heavy metals, etc. The incorporation of different nanofillers, such as carbon nanotubes, zinc oxide, graphene oxide, silver and copper nanoparticles, titanium dioxide, 2D materials, and some other novel nano-scale materials into polymeric membranes have provided great advances, e.g., enhancing on hydrophilicity, suppressing the accumulation of pollutants and foulants, enhancing rejection efficiencies and improving mechanical properties and thermal stabilities. Thereby, the aim of this work is to provide up-to-date information related to those novel nanocomposite membranes and their contribution for water treatment applications.

9.
Membranes (Basel) ; 8(1)2018 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-29510555

RESUMO

In this work, PVDF homopolymer was blended with PVDF-co-HFP copolymer and studied in terms of morphology, porosity, pore size, hydrophobicity, permeability, and mechanical properties. Different solvents, namely N-Methyl-2 pyrrolidone (NMP), Tetrahydrofuran (THF), and Dimethylformamide (DMF) solvents, were used to fabricate blended PVDF flat sheet membranes without the introduction of any pore forming agent, through a non-solvent induced phase separation (NIPS) technique. Furthermore, the performance of the fabricated membranes was investigated for pressure and thermal driven applications. The porosity of the membranes was slightly increased with the increase in the overall content of PVDF and by the inclusion of PVDF copolymer. Total PVDF content, copolymer content, and mixed-solvent have a positive effect on mechanical properties. The addition of copolymer increased the hydrophobicity when the total PVDF content was 20%. At 25% and with the inclusion of mixed-solvent, the hydrophobicity was adversely affected. The permeability of the membranes increased with the increase in the overall content of PVDF. Mixed-solvents significantly improved permeability.

10.
Materials (Basel) ; 11(3)2018 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-29562729

RESUMO

Chitin and lignin primarily accumulate as bio-waste resulting from byproducts of crustacean crusts and plant biomass. Recently, their use has been proposed for diverse and unique bioengineering applications, amongst others. However, their weak mechanical properties need to be improved in order to facilitate their industrial utilization. In this paper, we fabricated hybrid fibers composed of a chitin-lignin (CL)-based sol-gel mixture and elastomeric poly (glycerol sebacate) (PGS) using a standard electrospinning approach. Obtained results showed that PGS could be coherently blended with the sol-gel mixture to form a nanofibrous scaffold exhibiting remarkable mechanical performance and improved antibacterial and antifungal activity. The developed hybrid fibers showed promising potential in advanced biomedical applications such as wound care products. Ultimately, recycling these sustainable biopolymers and other bio-wastes alike could propel a "greener" economy.

11.
Recent Pat Nanotechnol ; 10(3): 231-251, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27136930

RESUMO

BACKGROUND: The membrane processes are interesting and economical techniques for reuse of municipal and industrial wastewater as well as seawater desalination. However their drawbacks can be resumed in the fouling and biofouling due to the deposition and adsorption phenomenon of the components and the development of biofilm on membrane surface. Several studies have focused on the effect of the incorporation of nanoparticles in polymeric membrane matrix on the biofouling properties. Few relevant patents to the topic have been reviewed and cited. METHODS: Polyethersulfone (PES) membranes filled with silver nanoparticles (AgNPs) were prepared by non-solvent induced phase separation (NIPS) process using polyvinylpyrrolidone (PVP) as additive and N-Methyl-2-pyrrolidone (NMP) as solvent. Dope solution compositions, coagulation bath (CB) compositions, time before immersion in CB and casting speed were systematically studied. Membrane structure was characterized by scanning electron microscopy, contact angle, streaming potential measurement and X-ray diffraction (XRD). RESULTS: Membrane performance was assessed by pure water permeability, antifouling property, porosity and mechanical property. Silver nanoparticles (AgNPs) were prepared by the chemical reduction of silver nitrate solution with freshly prepared fructose solution, using PVP as capping agent and NaOH as accelerant and settled using acetone. The synthesized AgNPs were firstly characterized by Dynamic light scattering (DLS) technique, UV-visible spectrophotometer and X-ray diffraction spectroscopy (XRD). Then, we have selected a 15% PES mixed with 15% of PVP dope solution to prepare PESAgNPs blended membranes. CONCLUSION: All the nanocomposite membranes showed superb antibacterial and anti-biofouling performances, indicating that AgNPs in the PES membranes could be an effective approach to minimize membrane biofouling.


Assuntos
Antibacterianos/química , Incrustação Biológica/prevenção & controle , Membranas Artificiais , Nanopartículas Metálicas/química , Polímeros/química , Prata/química , Sulfonas/química , Patentes como Assunto
12.
Spectrochim Acta A Mol Biomol Spectrosc ; 131: 169-76, 2014 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-24830630

RESUMO

Understanding the role played by chemical additives such as NaCl salt, acid and Cetylpyridinium Chloride (CPC) surfactant on the interaction between dye and polyelectrolyte contributes to optimization of processes using polyelectrolytes in the removal of dye from aqueous solution. Herein we focus in the interaction between Safranin T, a cationic dye, with two anionic polyelectrolytes, poly(ammonium acrylate) and poly(acrylic acid) using spectrophotometric method and conductivity measurement. In aqueous solution, each of anionic polyelectrolytes forms a complex with the dye and induces a metachromasy indicated by the blue shift of the absorbance of the dye. The stoichiometry of complexes evaluated by the molar ratio method are 1:1 for Safranin T poly(ammonium acrylate) and 2:1 in the case of Safranin T poly(acrylic acid). The effect of additives on the stability of complexes has been studied by varying concentrations of the salt and the surfactant and pH of the solution. The thermodynamic parameters of interaction ΔG, ΔH and ΔS at different temperatures were evaluated to determine the stability constant of the complexes.


Assuntos
Resinas Acrílicas/química , Compostos de Amônio/química , Corantes/química , Fenazinas/química , Ânions/química , Cátions/química , Condutividade Elétrica , Eletrólitos/química , Espectrofotometria
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA