Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Macromolecules ; 55(17): 7380-7391, 2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36118598

RESUMO

We report the synthesis of sterically-stabilized diblock copolymer particles at 20% w/w solids via reversible addition-fragmentation chain transfer (RAFT) aqueous dispersion polymerization of N,N'-dimethylacrylamide (DMAC) in highly salty media (2.0 M (NH4)2SO4). This is achieved by selecting a well-known zwitterionic water-soluble polymer, poly(2-(methacryloyloxy)ethyl phosphorylcholine) (PMPC), to act as the salt-tolerant soluble precursor block. A relatively high degree of polymerization (DP) can be targeted for the salt-insoluble PDMAC block, which leads to the formation of a turbid free-flowing dispersion of PDMAC-core particles by a steric stabilization mechanism. 1H NMR spectroscopy studies indicate that relatively high DMAC conversions (>99%) can be achieved within a few hours at 30 °C. Aqueous GPC analysis indicates high blocking efficiencies and unimodal molecular weight distributions, although dispersities increase monotonically as higher degrees of polymerization (DPs) are targeted for the PDMAC block. Particle characterization techniques include dynamic light scattering (DLS) and electrophoretic light scattering (ELS) using a state-of-the-art instrument that enables accurate ζ potential measurements in a concentrated salt solution. 1H NMR spectroscopy studies confirm that dilution of the as-synthesized dispersions using deionized water lowers the background salt concentration and hence causes in situ molecular dissolution of the salt-intolerant PDMAC chains, which leads to a substantial thickening effect and the formation of transparent gels. Thus, this new polymerization-induced self-assembly (PISA) formulation enables high molecular weight water-soluble polymers to be prepared in a highly convenient, low-viscosity form. In principle, such aqueous PISA formulations are highly attractive: there are various commercial applications for high molecular weight water-soluble polymers, while the well-known negative aspects of using a RAFT agent (i.e., its cost, color, and malodor) are minimized when targeting such high DPs.

2.
ACS Macro Lett ; 10(3): 389-394, 2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-35549062

RESUMO

Water-soluble bis(N-acylpiperidone)s with aldehyde-like reactivity are reported to react rapidly with polyvinylamine at room temperature, providing unprecedented clean reaction products. Unlike most amine/ketone reactions that result in arbitrary mixtures of imines, aminals, hemiaminals, or hydrates, in the present study hemiaminals, aminals, or hemiaminal/aminal mixtures are exclusively found. Detailed NMR spectroscopy of solutions, gels, and solids, aided by model reactions, reveals that the hemiaminal/aminal ratio depends on pH, water content, and cross-linking density. Network formation is fully reversible upon changes in pH, with the resulting moduli from rheology spanning almost 3 orders of magnitude. The self-healing ability of the system is probed by rheology as well, demonstrating maintained material properties of fractured and healed samples. The unusually clean, fast, and reversible chemistry highlights bispiperidones as a class of efficient building blocks with unprecedented possibilities in dynamic covalent chemistry.


Assuntos
Hidrogéis , Polivinil , Hidrogéis/química , Reologia , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA