Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Bioengineering (Basel) ; 10(2)2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36829757

RESUMO

Recent progress in cortical stem cell transplantation has demonstrated its potential to repair the brain. However, current transplant models have yet to demonstrate that the circuitry of transplant-derived neurons can encode useful function to the host. This is likely due to missing cell types within the grafts, abnormal proportions of cell types, abnormal cytoarchitecture, and inefficient vascularization. Here, we devised a transplant platform for testing neocortical tissue prototypes. Dissociated mouse embryonic telencephalic cells in a liquid scaffold were transplanted into aspiration-lesioned adult mouse cortices. The donor neuronal precursors differentiated into upper and deep layer neurons that exhibited synaptic puncta, projected outside of the graft to appropriate brain areas, became electrophysiologically active within one month post-transplant, and responded to visual stimuli. Interneurons and oligodendrocytes were present at normal densities in grafts. Grafts became fully vascularized by one week post-transplant and vessels in grafts were perfused with blood. With this paradigm, we could also organize cells into layers. Overall, we have provided proof of a concept for an in vivo platform that can be used for developing and testing neocortical-like tissue prototypes.

2.
Cells ; 11(10)2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35626693

RESUMO

Interest is growing in using cell replacements to repair the damage caused by an ischemic stroke. Yet, the usefulness of cell transplants can be limited by the variability observed in their successful engraftment. For example, we recently showed that, although the inclusion of donor-derived vascular cells was necessary for the formation of large grafts (up to 15 mm3) at stroke sites in mice, the size of the grafts overall remained highly variable. Such variability can be due to differences in the cells used for transplantation or the host environment. Here, as possible factors affecting engraftment, we test host sex, host age, the extent of ischemic damage, time of transplant after ischemia, minor differences in donor cell maturity, and cell viability at the time of transplantation. We find that graft size at stroke sites correlates with the size of ischemic damage, host sex (females having graft sizes that correlate with damage), donor cell maturity, and host age, but not with the time of transplant after stroke. A general linear model revealed that graft size is best predicted by stroke severity combined with donor cell maturity. These findings can serve as a guide to improving the reproducibility of cell-based repair therapies.


Assuntos
Acidente Vascular Cerebral , Animais , Feminino , Humanos , Isquemia , Camundongos , Neurônios , Reprodutibilidade dos Testes , Doadores de Tecidos
4.
Stem Cell Res ; 59: 102642, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34971934

RESUMO

Neural precursor cells (NPCs) transplanted into the adult neocortex generate neurons that synaptically integrate with host neurons, supporting the possibility of achieving functional tissue repair. However, poor survival and functional neuronal recovery of transplanted NPCs greatly limits engraftment. Here, we test the hypothesis that combining blood vessel-forming vascular cells with neuronal precursors improves engraftment. By transplanting mixed embryonic neocortical cells into adult mice with neocortical strokes, we show that transplant-derived neurons synapse with appropriate targets while donor vascular cells form vessels that fuse with the host vasculature to perfuse blood within the graft. Although all grafts became vascularized, larger grafts had greater contributions of donor-derived vessels that increased as a function of their distance from the host-graft border. Moreover, excluding vascular cells from the donor cell population strictly limited graft size. Thus, inclusion of vessel-forming vascular cells with NPCs is required for more efficient engraftment and ultimately for tissue repair.

5.
Surg Neurol Int ; 13: 595, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36600738
6.
Rejuvenation Res ; 24(5): 375-376, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34405690
7.
Transl Oncol ; 14(8): 101114, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33975179

RESUMO

Across many cancer types in adults, upregulation of the nuclear-to-cytoplasmic transport protein Exportin-1 (XPO1) correlates with poor outcome and responsiveness to selinexor, an FDA-approved XPO1 inhibitor. Similar data are emerging in childhood cancers, for which selinexor is being evaluated in early phase clinical studies. Using proteomic profiling of primary tumor material from patients with high-risk neuroblastoma, as well as gene expression profiling from independent cohorts, we have demonstrated that XPO1 overexpression correlates with poor patient prognosis. Neuroblastoma cell lines are also sensitive to selinexor in the low nanomolar range. Based on these findings and knowledge that bortezomib, a proteasome inhibitor, blocks degradation of XPO1 cargo proteins, we hypothesized that combination treatment with selinexor and bortezomib would synergistically inhibit neuroblastoma cellular proliferation. We observed that selinexor promoted nuclear retention of IkB and that bortezomib augmented the ability of selinexor to induce cell-cycle arrest and cell death by apoptosis. This synergy was abrogated through siRNA knockdown of IkB. The synergistic effect of combining selinexor and bortezomib in vitro provides rationale for further investigation of this combination treatment for patients with high-risk neuroblastoma.

8.
J Neurosci ; 41(13): 2899-2910, 2021 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-33637561

RESUMO

The addition of new neurons to existing neural circuits in the adult brain remains of great interest to neurobiology because of its therapeutic implications. The premier model for studying this process has been the hippocampal dentate gyrus in mice, where new neurons are added to mature circuits during adulthood. Notably, external factors such as an enriched environment (EE) and exercise markedly increase hippocampal neurogenesis. Here, we demonstrate that EE acts by increasing fibroblast growth factor receptor (FGFR) function autonomously within neurogenic cells to expand their numbers in adult male and female mice. FGFRs activated by EE signal through their mediators, FGFR substrate (FRS), to induce stem cell proliferation, and through FRS and phospholipase Cγ to increase the number of adult-born neurons, providing a mechanism for how EE promotes adult neurogenesis.SIGNIFICANCE STATEMENT How the environment we live in affects cognition remains poorly understood. In the current study, we explore the mechanism underlying the effects of an enriched environment on the production of new neurons in the adult hippocampal dentate gyrus, a brain area integral in forming new memories. A mechanism is provided for how neural precursor cells in the adult mammalian dentate gyrus respond to an enriched environment to increase their neurogenic output. Namely, an enriched environment acts on stem and progenitor cells by activating fibroblast growth factor receptor signaling through phospholipase Cγ and FGF receptor substrate proteins to expand the pool of precursor cells.


Assuntos
Meio Ambiente , Hipocampo/citologia , Hipocampo/metabolismo , Células-Tronco Neurais/metabolismo , Neurogênese/fisiologia , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo , Fatores Etários , Animais , Feminino , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Receptores de Fatores de Crescimento de Fibroblastos/genética
9.
Neuroscience ; 453: 148-167, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33246055

RESUMO

Fibroblast Growth Factor Receptors (FGFRs) play crucial roles in promoting dendrite growth and branching during development. In mice, three FGFR genes, Fgfr1, Fgfr2, and Fgfr3, remain expressed in the adult neurogenic niche of the hippocampal dentate gyrus. However, the function of FGFRs in the dendritic maturation of adult-born neurons remains largely unexplored. Here, using conditional alleles of Fgfr1, Fgfr2, and Fgfr3 as well as Fgfr1 alleles lacking binding sites for Phospholipase-Cγ (PLCγ) and FGF Receptor Substrate (FRS) proteins, we test the requirement for FGFRs in dendritogenesis of adult-born granule cells. We find that deleting all three receptors results in a small decrease in proximal dendrite elaboration. In contrast, specifically mutating Tyr766 in FGFR1 (a PLCγ binding site) in an Fgfr2;Fgfr3 deficient background results in a dramatic increase of overall dendrite elaboration, while blocking FGFR1-FRS signaling causes proximal dendrite deficits and, to a lesser extent than Tyr766 mutants, increases distal dendrite elaboration. These findings reveal unexpectedly complex roles for FGFRs and their intracellular mediators in regulating proximal and distal dendrite elaboration, with the most notable role in suppressing distal elaboration through the PLCγbinding site.


Assuntos
Dendritos , Neurônios , Receptores de Fatores de Crescimento de Fibroblastos/genética , Transdução de Sinais , Animais , Dendritos/metabolismo , Camundongos , Neurogênese , Neurônios/metabolismo , Fosforilação , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo
10.
Stem Cell Res ; 48: 101999, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32971459

RESUMO

L1 is an immunoglobulin domain (Ig)-containing protein essential for a wide range of neurodevelopmental processes highly conserved across species from worms to humans. L1 can act as a cell adhesion molecule by binding to other Ig-containing proteins or as a ligand for certain tyrosine kinase receptors such as FGFRs and TRKs, which are required not only during neurodevelopment but also in hippocampal neurogenesis. Yet, the role of L1 itself in adult hippocampal neurogenesis remains unaddressed. Here, we used several Cre-driver lines in mice to conditionally delete a floxed allele of L1cam at different points along the differentiation lineage of new neurons and in surrounding neurons in the adult dentate gyrus of the hippocampus. We found that L1cam deletion in stem/progenitor cells increased: 1) the differentiation of progenitors into new neurons, 2) the complexity of dendritic arbors in immature neurons, and 3) anxiety-related behavior. In addition, deletion of L1cam in neurons leads to an earlier age-related decline in hippocampal neurogenesis. These data suggest that L1 is not only important for normal nervous system development, but also for maintaining certain neural processes in adulthood.


Assuntos
Giro Denteado , Molécula L1 de Adesão de Célula Nervosa , Animais , Diferenciação Celular , Hipocampo , Camundongos , Molécula L1 de Adesão de Célula Nervosa/genética , Neurogênese , Neurônios
11.
Neuron ; 107(3): 436-453.e12, 2020 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-32485136

RESUMO

New methods for investigating human astrocytes are urgently needed, given their critical role in the central nervous system. Here we show that CD49f is a novel marker for human astrocytes, expressed in fetal and adult brains from healthy and diseased individuals. CD49f can be used to purify fetal astrocytes and human induced pluripotent stem cell (hiPSC)-derived astrocytes. We provide single-cell and bulk transcriptome analyses of CD49f+ hiPSC-astrocytes and demonstrate that they perform key astrocytic functions in vitro, including trophic support of neurons, glutamate uptake, and phagocytosis. Notably, CD49f+ hiPSC-astrocytes respond to inflammatory stimuli, acquiring an A1-like reactive state, in which they display impaired phagocytosis and glutamate uptake and fail to support neuronal maturation. Most importantly, we show that conditioned medium from human reactive A1-like astrocytes is toxic to human and rodent neurons. CD49f+ hiPSC-astrocytes are thus a valuable resource for investigating human astrocyte function and dysfunction in health and disease.


Assuntos
Astrócitos/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Integrina alfa6/metabolismo , Doença de Alzheimer/metabolismo , Animais , Astrócitos/fisiologia , Biomarcadores/metabolismo , Citometria de Fluxo , Perfilação da Expressão Gênica , Ácido Glutâmico/metabolismo , Humanos , Inflamação/metabolismo , Inflamação/fisiopatologia , Camundongos , Técnicas de Patch-Clamp , Fagocitose/fisiologia , RNA-Seq , Análise de Célula Única
12.
Front Cell Dev Biol ; 8: 113, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32161758

RESUMO

Neural stem cells in the lateral ganglionic eminence (LGE) generate progenitors that migrate through the rostral migratory stream (RMS) to repopulate olfactory bulb (OB) interneurons, but the regulation of this process is poorly defined. The evolutionarily conserved Notch pathway is essential for neural development and maintenance of neural stem cells. Jagged1, a Notch ligand, is required for stem cell maintenance. In humans, heterozygous mutations in JAGGED1 cause Alagille syndrome, a genetic disorder characterized by complications such as cognitive impairment and reduced number of bile ducts in the liver, suggesting the presence of a JAGGED1 haploinsufficient phenotype. Here, we examine the role of Jagged1 using a conditional loss-of-function allele in the nervous system. We show that heterozygous Jagged1 mice possess a haploinsufficient phenotype that is associated with a reduction in size of the LGE, a reduced proliferative state, and fewer progenitor cells in the LGE and RMS. Moreover, loss of Jagged1 leads to deficits in periglomerular interneurons in the OB. Our results support a dose-dependent role for Jagged1 in maintaining progenitor division within the LGE and RMS.

13.
Glia ; 68(3): 617-630, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31670856

RESUMO

FGF signaling is important for numerous cellular processes and produces diverse cellular responses. Our recent studies using mice conditionally lacking FGF-Receptor-1 (Fgfr1) or Fgfr2 during different stages of myelinogenesis revealed that Fgfr signaling is first required embryonically for the specification of oligodendrocyte progenitors (OPCs) and then later postnatally for the growth of the myelin sheath during active myelination but not for OPC proliferation, differentiation, or ensheathment of axons. What intracellular signal transduction pathways are recruited immediately downstream of Fgfrs and mediate these distinct developmentally regulated stage-specific responses remain unclear. The adapter protein Fibroblast-Growth-Factor-Receptor-Substrate-2 (Frs2) is considered a key immediate downstream target of Fgfrs. Therefore, here, we investigated the in vivo role of Frs adapters in the oligodendrocyte lineage cells, using a novel genetic approach where mice were engineered to disrupt binding of Frs2 to Fgfr1 or Fgfr2, thus specifically uncoupling Frs2 and Fgfr signaling. In addition, we used conditional mutants with complete ablation of Frs2 and Frs3. We found that Frs2 is required for specification of OPCs in the embryonic telencephalon downstream of Fgfr1. In contrast, Frs2 is largely dispensable for transducing Fgfr2-mediated signals for the growth of the myelin sheath during postnatal myelination, implying the potential involvement of other adapters downstream of Fgfr2 for this function. Together, our data demonstrate a developmental stage-specific function of Frs2 in the oligodendrocyte lineage cells. This contextual requirement of adapter proteins, downstream of Fgfrs, could partly explain the distinct responses elicited by the activation of Fgfrs during different stages of myelinogenesis.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Linhagem da Célula/fisiologia , Bainha de Mielina/metabolismo , Oligodendroglia/metabolismo , Animais , Diferenciação Celular/fisiologia , Células Cultivadas , Fatores de Crescimento de Fibroblastos/metabolismo , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Transdução de Sinais/fisiologia
14.
Mol Ther Nucleic Acids ; 17: 530-539, 2019 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-31357131

RESUMO

There have been limited options for people who suffer from fibroblast growth factor receptor (FGFR) signaling disorders. In this study, we developed RNA aptamers specific for FGFR3 as potential therapeutic agents. Using a structured aptamer library, we performed ten rounds of SELEX (systematic evolution of ligands by exponential enrichment) against mouse FGFR3c protein. Using an engineered BaF3 cell line, one aptamer clone from round 6 of the selection inhibited FGF-dependent cell growth with a concentration at which 50% of growth is observed (IC50) of ∼260 nM and bound both mouse and human FGFR3 but not FGFR1 or FGFR2. This inhibitor of FGFR3 signaling (iR3), when dimerized using a template-driven approach, resulted in a functional activator of FGFR3 (aR3). We validated the activity and specificity of iR3 and aR3 on engineered BaF3 cell lines, mouse and human FGFR protein, and primary cultures of neuroepithelial precursor cells.

15.
Stem Cell Reports ; 12(6): 1223-1231, 2019 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-31189094

RESUMO

Stimulating oligodendrocyte (OL) production from endogenous progenitor cells is an important strategy for myelin repair and functional restoration after disease or injury-induced demyelination. Subventricular zone (SVZ) stem cells are multipotential, generating neurons and oligodendroglia. The factors that regulate the fate of these stem cells are poorly defined. In this study, we show that genetically increasing fibroblast growth factor receptor-3 (FGFR3) activity in adult SVZ stem cells transiently and dramatically redirects their differentiation from the neuronal to the oligodendroglial lineage after pathological demyelination. The increased SVZ-derived oligodendrogenesis leads to improved OL regeneration and myelin repair, not only in the corpus callosum (a normal destination for SVZ-derived oligodendroglial cells), but also in the lower cortical layers. This study identifies FGF signaling as a potent target for improving endogenous SVZ-derived OL regeneration and remyelination.


Assuntos
Células-Tronco Adultas/metabolismo , Ventrículos Laterais/metabolismo , Bainha de Mielina/fisiologia , Células-Tronco Neurais/metabolismo , Oligodendroglia/metabolismo , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/metabolismo , Regeneração , Células-Tronco Adultas/patologia , Animais , Corpo Caloso/metabolismo , Corpo Caloso/patologia , Doenças Desmielinizantes/metabolismo , Doenças Desmielinizantes/patologia , Ventrículos Laterais/patologia , Camundongos , Células-Tronco Neurais/patologia , Oligodendroglia/patologia , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/genética , Transdução de Sinais
16.
Trends Neurosci ; 41(5): 267-279, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29548515

RESUMO

Current antiaging strategies focusing on druggable targets have met with relatively limited success to date. Replacement of cells, tissues, and organs could provide an alternative means for targeting age-induced damage and potentially eliminating some of it. However, before this is a viable option, numerous challenges need to be addressed. Most notably, whether the brain, which defines our self-identity, is amenable to replacement therapies is unclear. Here, we consider whether progressive cell replacement is a potential approach to reverse brain aging without grossly altering function. We focus mainly on the neocortex, seat of our highest cognitive functions, because of abundant knowledge on neocortical development, plasticity, and how the neocortex can functionally incorporate new neurons. We outline the primary challenges for brain cell replacement, and key areas that require further investigation.


Assuntos
Envelhecimento , Encefalopatias/terapia , Encéfalo/fisiopatologia , Terapia Baseada em Transplante de Células e Tecidos , Envelhecimento/fisiologia , Animais , Encefalopatias/fisiopatologia , Terapia Baseada em Transplante de Células e Tecidos/métodos , Humanos
17.
PLoS Biol ; 16(3): e2002988, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29534062

RESUMO

How asymmetries in motor behavior become established normally or atypically in mammals remains unclear. An established model for motor asymmetry that is conserved across mammals can be obtained by experimentally inducing asymmetric striatal dopamine activity. However, the factors that can cause motor asymmetries in the absence of experimental manipulations to the brain remain unknown. Here, we show that mice with inner ear dysfunction display a robust left or right rotational preference, and this motor preference reflects an atypical asymmetry in cortico-striatal neurotransmission. By unilaterally targeting striatal activity with an antagonist of extracellular signal-regulated kinase (ERK), a downstream integrator of striatal neurotransmitter signaling, we can reverse or exaggerate rotational preference in these mice. By surgically biasing vestibular failure to one ear, we can dictate the direction of motor preference, illustrating the influence of uneven vestibular failure in establishing the outward asymmetries in motor preference. The inner ear-induced striatal asymmetries identified here intersect with non-ear-induced asymmetries previously linked to lateralized motor behavior across species and suggest that aspects of left-right brain function in mammals can be ontogenetically influenced by inner ear input. Consistent with inner ear input contributing to motor asymmetry, we also show that, in humans with normal ear function, the motor-dominant hemisphere, measured as handedness, is ipsilateral to the ear with weaker vestibular input.


Assuntos
Lateralidade Funcional , Doenças do Labirinto/complicações , Atividade Motora/fisiologia , Animais , Comportamento Animal , Humanos , Camundongos , Transmissão Sináptica/fisiologia , Vestíbulo do Labirinto/fisiologia , Vestíbulo do Labirinto/fisiopatologia
18.
Neuroscience ; 369: 192-201, 2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-29155277

RESUMO

Dentate granule cells (DGCs) play important roles in cognitive processes. Knowledge about how growth factors such as FGFs and neurotrophins contribute to the maturation and synaptogenesis of DGCs is limited. Here, using brain-specific and germline mouse mutants we show that a module of neurotrophin and FGF signaling, the FGF Receptor Substrate (FRS) family of intracellular adapters, FRS2 and FRS3, are together required for postnatal brain development. In the hippocampus, FRS promotes dentate gyrus morphogenesis and DGC maturation during developmental neurogenesis, similar to previously published functions for both neurotrophins and FGFs. Consistent with a role in DGC maturation, two-photon imaging revealed that Frs2,3-double mutants have reduced numbers of dendritic branches and spines in DGCs. Functional analysis further showed that double-mutant mice exhibit fewer excitatory synaptic inputs onto DGCs. These observations reveal roles for FRS adapters in DGC maturation and synaptogenesis and suggest that FRS proteins may act as an important node for FGF and neurotrophin signaling in postnatal hippocampal development.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Hipocampo/metabolismo , Proteínas de Membrana/metabolismo , Neurogênese/fisiologia , Neurônios/metabolismo , Sinapses/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Potenciais Pós-Sinápticos Excitadores/fisiologia , Hipocampo/citologia , Hipocampo/crescimento & desenvolvimento , Proteínas de Membrana/genética , Camundongos Transgênicos , Potenciais Pós-Sinápticos em Miniatura/fisiologia , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Neurônios/citologia , Técnicas de Cultura de Tecidos
19.
J Neurosci ; 37(23): 5690-5698, 2017 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-28483978

RESUMO

FGF signaling, an important component of intercellular communication, is required in many tissues throughout development to promote diverse cellular processes. Whether FGF receptors (FGFRs) accomplish such varied tasks in part by activating different intracellular transducers in different contexts remains unclear. Here, we used the developing mouse telencephalon as an example to study the role of the FRS adapters FRS2 and FRS3 in mediating the functions of FGFRs. Using tissue-specific and germline mutants, we examined the requirement of Frs genes in two FGFR-dependent processes. We found that Frs2 and Frs3 are together required for the differentiation of a subset of medial ganglionic eminence (MGE)-derived neurons, but are dispensable for the survival of early telencephalic precursor cells, in which any one of three FGFRs (FGFR1, FGFR2, or FGFR3) is sufficient for survival. Although FRS adapters are dispensable for ERK-1/2 activation, they are required for AKT activation within the subventricular zone of the developing MGE. Using an FRS2,3-binding site mutant of Fgfr1, we established that FRS adapters are necessary for mediating most or all FGFR1 signaling, not only in MGE differentiation, but also in cell survival, implying that other adapters mediate at least in part the signaling from FGFR2 and FGFR3. Our study provides an example of a contextual role for an intracellular transducer and contributes to our understanding of how FGF signaling plays diverse developmental roles.SIGNIFICANCE STATEMENT FGFs promote a range of developmental processes in many developing tissues and at multiple developmental stages. The mechanisms underlying this multifunctionality remain poorly defined in vivo Using telencephalon development as an example, we show here that FRS adapters exhibit some selectivity in their requirement for mediating FGF receptor (FGFR) signaling and activating downstream mediators that depend on the developmental process, with a requirement in neuronal differentiation but not cell survival. Differential engagement of FRS and non-FRS intracellular adapters downstream of FGFRs could therefore in principle explain how FGFs play several distinct roles in other developing tissues and developmental stages.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Células-Tronco Neurais/metabolismo , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo , Telencéfalo/embriologia , Telencéfalo/metabolismo , Animais , Sobrevivência Celular/fisiologia , Células Cultivadas , Feminino , Masculino , Camundongos , Camundongos Transgênicos , Células-Tronco Neurais/citologia , Telencéfalo/citologia
20.
J Neurosci ; 37(20): 5144-5154, 2017 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-28438970

RESUMO

Attention-deficit/hyperactivity disorder (ADHD) and anxiety-related disorders occur at rates 2-3 times higher in deaf compared with hearing children. Potential explanations for these elevated rates and the heterogeneity of behavioral disorders associated with deafness have usually focused on socio-environmental rather than biological effects. Children with the 22q11.2 deletion or duplication syndromes often display hearing loss and behavioral disorders, including ADHD and anxiety-related disorders. Here, we show that mouse mutants with either a gain or loss of function of the T-Box transcription factor gene, Tbx1, which lies within the 22q11.2 region and is responsible for most of the syndromic defects, exhibit inner ear defects and hyperactivity. Furthermore, we show that (1) inner ear dysfunction due to the tissue-specific loss of Tbx1 or Slc12a2, which encodes a sodium-potassium-chloride cotransporter and is also necessary for inner ear function, causes hyperactivity; (2) vestibular rather than auditory failure causes hyperactivity; and (3) the severity rather than the age of onset of vestibular dysfunction differentiates whether hyperactivity or anxiety co-occurs with inner ear dysfunction. Together, these findings highlight a biological link between inner ear dysfunction and behavioral disorders and how sensory abnormalities can contribute to the etiology of disorders traditionally considered of cerebral origin.SIGNIFICANCE STATEMENT This study examines the biological rather than socio-environmental reasons why hyperactivity and anxiety disorders occur at higher rates in deaf individuals. Using conditional genetic approaches in mice, the authors show that (1) inner ear dysfunction due to either Tbx1 or Slc12a2 mutations cause hyperactivity; (2) it is vestibular dysfunction, which frequently co-occurs with deafness but often remains undiagnosed, rather than auditory dysfunction that causes hyperactivity and anxiety-related symptoms; and (3) the severity of vestibular dysfunction can predict whether hyperactivity or anxiety coexist with inner ear dysfunction. These findings suggest a need to evaluate vestibular function in hearing impaired individuals, especially those who exhibit hyperactive and anxiety-related symptoms.


Assuntos
Ansiedade/complicações , Ansiedade/fisiopatologia , Transtorno do Deficit de Atenção com Hiperatividade/fisiopatologia , Comportamento Animal , Surdez/fisiopatologia , Doenças Vestibulares/fisiopatologia , Animais , Ansiedade/patologia , Transtorno do Deficit de Atenção com Hiperatividade/complicações , Transtorno do Deficit de Atenção com Hiperatividade/patologia , Surdez/complicações , Surdez/patologia , Feminino , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Índice de Gravidade de Doença , Doenças Vestibulares/complicações , Doenças Vestibulares/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA