Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2480: 61-80, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35616857

RESUMO

Seeds are an attractive platform for the production of recombinant proteins because of their excellent storage properties and their well-developed endomembrane system, which allows accumulation of the product within specialized storage organelles. Due to the presence of these additional organelles and the resulting complexity of intracellular protein trafficking it is interesting to investigate the transport and storage of a recombinant protein within seed tissues, its interactions with endogenous reserve proteins and its impact on the ultrastructure of the endomembrane system. Possible approaches include sequential extraction procedures, subcellular fractionation and 2D as well as 3D electron microscopy techniques such as electron tomography (ET) and serial block face scanning electron microscopy (SBF-SEM), which are described and discussed in this chapter.


Assuntos
Tomografia com Microscopia Eletrônica , Sementes , Tomografia com Microscopia Eletrônica/métodos , Imageamento Tridimensional/métodos , Microscopia Eletrônica de Varredura , Transporte Proteico , Proteínas Recombinantes/genética , Sementes/genética
2.
Front Plant Sci ; 13: 1082890, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36684761

RESUMO

Cereal endosperm is solely devoted to the storage of proteins and starch that will be used by the embryo upon germination. The high degree of specialization of this tissue is reflected in its endomembrane system, in which ER derived protein bodies and protein storage vacuoles (PSVs) are of particular interest. In maize seeds, the main storage proteins are zeins, that form transport incompetent aggregates within the ER lumen and finally build protein bodies that bud from the ER. In contrast to the zeins, the maize globulins are not very abundant and the vacuolar storage compartment of maize endosperm is not fully described. Whereas in other cereals, including wheat and barley, the PSV serves as the main protein storage compartment, only small, globulin-containing PSVs have been identified in maize so far. We present here a multi-scale set of data, ranging from live-cell imaging to more sophisticated 3D electron microscopy techniques (SBF-SEM), that has allowed us to investigate in detail the vacuoles in maize endosperm cells, including a novel, autophagic vacuole that is present in early developmental stages.

3.
Front Plant Sci ; 11: 1266, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32973832

RESUMO

[This corrects the article DOI: 10.3389/fpls.2020.00809.].

4.
Front Plant Sci ; 11: 809, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32595683

RESUMO

Zeins are the main storage proteins in maize seed endosperm, and the onset of zein synthesis in young seeds challenges the endomembrane system and results in the formation of storage organelles. Even though zeins lack a conventional endoplasmic reticulum (ER) retention signal, they accumulate within the ER and assemble in conspicuous ER-derived protein bodies (PBs) stabilized by disulfide bridge formation and hydrophobic interaction between zein chains. Zein body formation during seed development has been extensively studied, as well as the mechanisms that lead to the initiation of PBs. However, the exact course of the PB formation process and the spatial relationship with the ER remain unclear. The development of serial block face scanning electron microscopy (SBF-SEM) techniques that allow three-dimensional imaging combined with the high resolution of electron microscopy provides new perspectives on the study of the plant endomembrane system. Here, we demonstrate that (i) the ER of maize seeds is mainly formed by massive sheets and (ii) PBs are not budding from tubules or the edge of sheets, but protrude from the entire surface of the ER sheet.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA