Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Brain Behav Immun ; 118: 69-77, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38369248

RESUMO

Sleep strongly supports the formation of adaptive immunity, e.g., after vaccination. However, the underlying mechanisms remain largely obscure. Here we show in healthy humans that sleep compared to nocturnal wakefulness specifically promotes the migration of various T-cell subsets towards the chemokine CCL19, which is essential for lymph-node homing and, thus, for the initiation and maintenance of adaptive immune responses. Migration towards the inflammatory chemokine CCL5 remained unaffected. Incubating the cells with plasma from sleeping participants likewise increased CCL19-directed migration, an effect that was dependent on growth hormone and prolactin signaling. These findings show that sleep selectively promotes the lymph node homing potential of T cells by increasing hormonal release, and thus reveal a causal mechanism underlying the supporting effect of sleep on adaptive immunity in humans.


Assuntos
Quimiocina CCL19 , Hormônio do Crescimento , Prolactina , Sono , Humanos , Movimento Celular , Quimiocina CCL19/metabolismo , Hormônio do Crescimento/metabolismo , Prolactina/metabolismo , Sono/fisiologia
2.
Phys Rev Lett ; 108(20): 200404, 2012 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-23003130

RESUMO

We present a generic approach to the condensed-matter ground-state problem which is complementary to variational techniques and works directly in the thermodynamic limit. Relaxing the ground-state problem, we obtain semidefinite programs (SDP). These can be solved efficiently, yielding strict lower bounds to the ground-state energy and approximations to the few-particle Green's functions. As the method is applicable for all particle statistics, it represents, in particular, a novel route for the study of strongly correlated fermionic and frustrated spin systems in D>1 spatial dimensions. It is demonstrated for the XXZ model and the Hubbard model of spinless fermions. The results are compared against exact solutions, quantum Monte Carlo calculations, and Anderson bounds, showing the competitiveness of the SDP method.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA