Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Proc Biol Sci ; 278(1707): 835-42, 2011 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-20861045

RESUMO

Climate is changing at a fast pace, causing widespread, profound consequences for living organisms. Failure to adjust the timing of life-cycle events to climate may jeopardize populations by causing ecological mismatches to the life cycle of other species and abiotic factors. Population declines of some migratory birds breeding in Europe have been suggested to depend on their inability to adjust migration phenology so as to keep track of advancement of spring events at their breeding grounds. In fact, several migrants have advanced their spring arrival date, but whether such advancement has been sufficient to compensate for temporal shift in spring phenophases or, conversely, birds have become ecologically mismatched, is still an unanswered question, with very few exceptions. We used a novel approach based on accumulated winter and spring temperatures (degree-days) as a proxy for timing of spring biological events to test if the progress of spring at arrival to the breeding areas by 117 European migratory bird species has changed over the past five decades. Migrants, and particularly those wintering in sub-Saharan Africa, now arrive at higher degree-days and may have therefore accumulated a 'thermal delay', thus possibly becoming increasingly mismatched to spring phenology. Species with greater 'thermal delay' have shown larger population decline, and this evidence was not confounded by concomitant ecological factors or by phylogenetic effects. These findings provide general support to the largely untested hypotheses that migratory birds are becoming ecologically mismatched and that failure to respond to climate change can have severe negative impacts on their populations. The novel approach we adopted can be extended to the analysis of ecological consequences of phenological response to climate change by other taxa.


Assuntos
Migração Animal , Aves/fisiologia , Mudança Climática , Temperatura , Animais , Densidade Demográfica , Dinâmica Populacional , Estações do Ano
2.
Vector Borne Zoonotic Dis ; 10(7): 639-47, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20854016

RESUMO

West Nile virus (WNV) is a mosquito-borne flavivirus naturally circulating in wild bird populations. The virus is also capable to infect a broad range of vertebrate species. Humans and equines are highly susceptible and can develop mild flu-like illnesses as well as severe encephalitis leading to fatalities. Most recently, WNV was found to circulate in countries close to Germany, such as France, Czech Republic, Italy, Austria, and Hungary. Given this epidemiological situation its spread to Germany cannot be ruled out. As no data on the WNV situation were available for Germany for the most recent past, we have conducted a serological survey to reveal WNV antibodies in wild birds. More than 2700 blood samples from migratory and resident birds representing 72 species that were collected during 2005-2009 were tested using an immunofluorescence assay and partly by micro-virus neutralization test. By immunofluorescence assay WNV-reactive antibodies could be demonstrated in 11 wild bird species. Similarly, WNV-neutralizing antibodies were revealed in migratory birds belonging to 10 species, but not in resident birds. According to the absence of WNV-reactive antibodies in resident birds and the absence of WNV-specific RNA in all investigated bird samples, there is currently no evidence for a WNV circulation in Germany.


Assuntos
Doenças das Aves/epidemiologia , Febre do Nilo Ocidental/veterinária , Vírus do Nilo Ocidental/isolamento & purificação , Migração Animal , Animais , Animais Selvagens , Animais de Zoológico , Doenças das Aves/virologia , Aves , Alemanha/epidemiologia , Febre do Nilo Ocidental/epidemiologia , Febre do Nilo Ocidental/virologia
3.
Proc Biol Sci ; 270(1512): 233-40, 2003 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-12614571

RESUMO

Migrant birds have been trapped on the island of Helgoland (southeastern North Sea) since 1909, with methods and sampling effort remaining unchanged throughout the last four decades. In 12 short/medium-distance migrants and 12 long-distance migrants (23 passerines plus the European woodcock) sample sizes were sufficient to calculate mean spring passage (msp) times and to relate these to climate change. All but one species, passing Helgoland en route to their breeding areas (mainly in Scandinavia), show a trend towards earlier msp-time, which is significant in 7 short/medium-distance migrants and 10 long-distance migrants. The msp-times advanced by 0.05-0.28 days per year, short/medium-distance migrants not differing from long-distance migrants. In 23 out of the 24 species, earlier msp-times coincide with local warmer msp-temperatures (significantly in 11 and 7 species of the two groups, respectively). Even more striking is the relation to a large-scale phenomenon, the North Atlantic Oscillation (NAO), during the last four decades. Again, in 23 out of the 24 species, an earlier msp-time coincides with higher NAO indices (significantly in 9 and 12 species, respectively). The NAO index can also explain differences and similarities in spring migration strategies, as well as migration routes within Europe.


Assuntos
Clima , Aves Canoras/fisiologia , Animais , Oceano Atlântico , Emigração e Imigração , Alemanha , Estudos Longitudinais , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA