RESUMO
Worldwide, liver cancer is the most frequent fatal malignancy. Liver cancer prognosis is poor because patients frequently receive advanced-stage diagnoses. The current study aimed to establish the potential pharmacological targets and the biological networks of scutellarein (SCU) in liver cancer, a natural product known to have low toxicity and side effects. To identify the differentially expressed genes between SCU-treated and SCU-untreated HepG2 cells, RNA sequencing (RNA-seq) was carried out. A total of 463 genes were revealed to have differential expression, of which 288 were upregulated and 175 were downregulated in the group that had received SCU treatment compared with a control group. Gene Ontology (GO) enrichment analysis of associated biological process terms revealed they were mostly involved in the regulation of protein heterodimerization activity and nucleosomes. Interaction of protein-protein network analysis using Search Tool for the Retrieval of Interacting Genes/Proteins resulted in two crucial interacting hub targets; namely, histone H1-4 and protein tyrosine phosphatase receptor type C. Additionally, the crucial targets were validated using western blotting. Overall, the present study demonstrated that the use of RNA-seq data, with bioinformatics tools, can provide a valuable resource to identify the pharmacological targets that could have important biological roles in liver cancer.
RESUMO
Cancer is a horrific disease that, to date, has no cure. It is caused by various factors and takes many lives. Apoptosis is a programmed cell death mechanism and if it does not function correctly in cancer cells, it can lead to severe disease. There are various signaling pathways for regulating apoptosis in cancer cells. Flavonoids are non-artificial natural bioactive compounds that are gaining attention as being capable of for inducing apoptosis in cancer cells. Among these, in this study, we focus on flavones. Flavones are a subclass of the numerous available flavonoids and possess several bioactive functions. Some of the most reported and well-known critical flavones, namely apigenin, acacetin, baicalein, luteolin, tangeretin, and wogonin, are discussed in depth in this review. Our main aim is to investigate the effects of the selected flavones on apoptosis and cell signaling pathways that contribute to death due to various types of cancers.
Assuntos
Flavonas , Neoplasias , Apigenina/farmacologia , Apoptose , Flavonas/farmacologia , Flavonoides/farmacologia , Humanos , Luteolina/farmacologia , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Transdução de SinaisRESUMO
Apigetrin (7-(ß-D-glucopyranosyloxy)-4',5-dihydroxyflavone), a glycoside bioactive dietary flavonoid derived from Taraxacum officinale and Teucrium gnaphalodes, is known to possess anticancer, antioxidant, and anti-inflammatory effects on numerous cancers. In the present study, we examined the effect of apigetrin in Hep3B hepatocellular cancer cell line (HCC). Apigetrin inhibited cell growth and proliferation of Hep3B cells, as confirmed by MTT and colony formation assay. We used apigetrin at concentrations of 0, 50, and 100 µM for later experiments. Of these concentrations, 100 µM of apigetrin showed a significant effect on cell inhibition. In apigetrin-treated Hep3B cells, cell cycle arrest occurred at the G2/M phase. Apoptosis and necroptosis of Hep3B cells treated with apigetrin were confirmed by Annexin V/propidium iodide (PI) staining and flow cytometry results. Morphological observation through 4',6-diamidino-2-phenylindole (DAPI) staining showed intense blue fluorescence representing chromatin condensation. Hematoxylin staining showed necroptotic features such as formation of vacuoles and swelling of organelles. Apigetrin increased reactive oxygen species (ROS) levels in cells, based on fluorescence imaging. Furthermore, the underlying mechanism involved in the apoptosis and necroptosis was elucidated through western blotting. Apigetrin up-regulated TNFα, but down-regulated phosphorylation of p-p65, and IκB. Apigetrin inhibited the expression of Bcl-xl but increased Bax levels. Up-regulation of cleaved PARP and cleaved caspase 3 confirmed the induction of apoptosis in apigetrin-treated Hep3B cells. Additionally, necroptosis markers RIP3, p-RIP3, and p-MLKL were significantly elevated by apigetrin dose-dependently, suggesting necroptotic cell death. Taken together, our findings strongly imply that apigetrin can induce apoptosis and necroptosis of Hep3B hepatocellular cancer cells. Thus, apigetrin as a natural compound might have potential for treating liver cancer.
Assuntos
Apigenina , Carcinoma Hepatocelular , Neoplasias Hepáticas , Apigenina/farmacologia , Apoptose/efeitos dos fármacos , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Pontos de Checagem da Fase M do Ciclo Celular/efeitos dos fármacos , NF-kappa B/metabolismo , Necroptose/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/farmacologiaRESUMO
Kynurenic acid was included in the three compounds (caffeic acid, chlorogenic acid, and kynurenic acid) that showed high antioxidant and anti-inflammatory potential among the phenolic compounds contained in Gynura procumbens. In this study, the mechanism of cancer cell death induced by kynurenic acid (KYNA), which has the highest molecular binding affinity, in the gastric cancer cell line AGS was confirmed in molecular docking analysis. KYNA showed the most cancer cell death effect on AGS cells among several gastric cancer cell lines (MKN, AGS, and SNU). AGS cells were used for later experiments, and KYNA concentrations of 0, 150, 200, and 250 µM were used. KYNA inhibited cell migration and proliferation in AGS cells in a concentration-dependent manner. G2/M phase cell cycle arrest and reduction of related proteins (Cdc25C, CDK1 and CyclinB1) were confirmed in KYNA-treated AGS cells. Apoptosis of KYNA-treated AGS cells was confirmed by Annexin V/propidium iodide (PI) staining flow cytometry analysis. As a result of morphological chromatin condensation through DAPI (4',6-diamidino-2-phenylindole), intense blue fluorescence was confirmed. The mechanism of apoptosis induction of KYNA-treated AGS cells was confirmed by western blotting. In the extrinsic pathway, apoptosis induction markers FasL, Fas, and Caspase-3 and -8 were increased in a concentration-dependent manner upon KYNA treatment. In the intrinsic pathway, the expression of anti-apoptotic factors PI3K, AKT, and Bcl-xL was down-regulated, and the expression of apoptosis-inducing factors BAD, Bak, Bax, Cytochrom C, and Caspase-9 was up-regulated. Therefore, in the present study, we strongly imply that KYNA induces apoptosis in AGS gastric cancer cells. This suggests that KYNA, a natural compound, could be the basis for drug for the treatment of gastric cancer.
Assuntos
Neoplasias Gástricas , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Ácido Cinurênico/farmacologia , Ácido Cinurênico/uso terapêutico , Simulação de Acoplamento Molecular , Neoplasias Gástricas/metabolismoRESUMO
Gastric cancer is the common type of malignancy positioned at second in mortality rate causing burden worldwide with increasing treatment options. More accurate and reliable diagnostic methods/biomarkers are urgently needed. The application of transcriptomics technologies possesses the high efficiency of identifying key metabolic pathways and functional genes in cancer research. In this study, we performed a transcriptome analysis on Prunetin treated AGS cells. A total of 1,118 differentially expressed (DE) genes on Prunetin treated AGS cancer cells, among which 463 were up-regulated and 655 were down-regulated. Notably, around 40 genes were found to be related with necroptosis, among which 16 genes were found to be in close association with Receptor Interacting Protein Kinase (RIPK) family. Validation of the RIPK genes through GEPIA identified 8 genes (NRP1, MNX1, SSRP1, PRDX2, PLRG1, LGALS4, SNX5 and FXYD3) which are highly expressed in stomach cancer were significantly down-regulated in PRU treated samples. In conclusion, the sequencing data explores the expression of RIPK mediated genes through necroptosis signaling network in treating gastric cancer. The futuristic validations on the 8 genes as candidate biomarkers will offer a treatment approach against gastric cancer using PRU.
Assuntos
Neoplasias Gástricas , Biomarcadores , Biologia Computacional , Proteínas de Ligação a DNA/genética , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Proteínas de Grupo de Alta Mobilidade/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Proteínas de Homeodomínio , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Isoflavonas , Proteínas de Membrana/metabolismo , Proteínas de Neoplasias/genética , Proteínas Nucleares , Neoplasias Gástricas/patologia , Fatores de Transcrição , Fatores de Elongação da Transcrição/metabolismoRESUMO
Breast cancer is one of the top causes of death, particularly among women, and it affects many women. Cancer can also be caused by various factors, including acquiring genetic alteration. Doctors use radiation to detect and treat breast cancer. As a result, breast cancer becomes radiation-resistant, necessitating a new strategy for its treatment. The approach discovered by the researchers is a flavonoid, which is being researched to see if it might help treat radiation-resistant breast cancer more safely than an approved medicine already being used in the field. As a result, this study focuses on the role of flavonoids in breast cancer suppression, breast cancer gene anomalies, and the resulting apoptotic mechanism.
Assuntos
Neoplasias da Mama , Flavonoides , Apoptose , Mama , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Feminino , Flavonoides/farmacologia , Flavonoides/uso terapêutico , HumanosRESUMO
Inflammation is a severe topic in the immune system and play a role as pro-inflammatory mediators. In response to such inflammatory substances, immune cells release cytokines such as tumor necrosis factor-α (TNF-α) and interleukin-1ß (IL-1ß). Lipopolysaccharide (LPS) is known as an endotoxin in the outer membrane of Gram-negative bacteria, and it catalyzes inflammation by stimulating the secretion of inflammatory-mediated cytokines such as cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) by stimulated immune cells. Among the pathways involved in inflammation, nuclear factor kappa (NF-кB) and mitogen-activated protein kinases (MAPKs) are important. NF-kB is a diploid composed of p65 and IkBα and stimulates the pro- gene. MAPKs is a family consisting of the extracellular signal-regulated kinase (ERK), c-Jun NH2-terminal kinase (JNK), and p38, JNK and p38 play a role as proinflammatory mediators. Thus, we aim to determine the scutellarein (SCU) effect on LPS stimulated RAW264.7 cells. Furthermore, since scutellarein has been shown to inhibit the SARS coronavirus helicase and has been used in Chinese medicine to treat inflammatory disorders like COVID-19, it would be required to examine scutellarein's anti-inflammatory mechanism. We identified inflammation-inducing substances using western blot with RAW264.7 cells and SCU. And we discovered that was reduced by treatment with SCU in p-p65 and p-IκBα. Also, we found that p-JNK and p-ERK were also decreased but there was no effect in p-p38. In addition, we have confirmed that the iNOS was also decreased after treatment but there is no change in the expression of COX-2. Therefore, this study shows that SCU can be used as a compound to treat inflammation.
Assuntos
COVID-19 , NF-kappa B , Animais , Apigenina , Ciclo-Oxigenase 2/metabolismo , Citocinas/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Lipopolissacarídeos/efeitos adversos , Camundongos , NF-kappa B/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Células RAW 264.7 , Transdução de SinaisRESUMO
The transcriptional machinery is composed of numerous factors that help to regulate gene expression in cells. The function and the fundamental role of transcription factors in different human diseases and cancer have been extensively researched. Activator protein-1 (AP-1) is an inducible transcription factor that consists of a diverse group of members including Jun, Fos, Maf, and ATF. AP-1 involves a number of processes such as proliferation, migration, and survival in cells. Dysfunctional AP-1 activity is seen in several diseases, especially cancer and inflammatory disorders. The AP-1 proteins are controlled by mitogen-activated protein kinases (MAPKs) and the NF-κB pathway. AP-1 inhibitors can be actively pursued as drug discovery targets in cancer therapy when used as a treatment to halt tumor progression. The consumption of phytochemicals in the diet is related to decreasing the incidence of cancer and proves to exhibit anticancer properties. Natural product targets AP-1 are effective cancer prevention and treatment options for various cancer types. Targeting AP-1 with natural products is an effective cancer treatment option for different cancer types. This review summarizes AP-1 subunit proteins, their structures, AP-1-related signaling, and its modulation by natural bioactive compounds.
RESUMO
Apigetrin is a glycosidic flavonoid derived from Teucrium gnaphalodes that has a wide range of biological activities, including antioxidant, anti-inflammatory, and anticancer. Inflammation is a kind of defense mechanism in the body. Flavonoids are natural phytochemicals that exert anti-inflammatory effects in numerous cells. In the present study, we investigated the anti-inflammatory effect of apigetrin and its underlying mechanism of activity in skeletal muscle cells (L6). The determination of cytotoxicity was performed by MTT assay. We treated L6 cells with apigetrin, and nontoxic concentrations were chosen to perform further experimentation. Apigetrin inhibited the expression of iNOS and COX-2 induced by LPS in a dose-dependent manner. iNOS and COX-2 are inflammatory markers responsible for enhancing the inflammatory response. Apigetrin also inhibited the LPS-induced phosphorylation of p65 and IκB-α. NF-κB signaling regulates the inflammatory process by mediating various proinflammatory genes. Similarly, the MAPK signaling pathway consists of ERK, JNK, and p38, which plays a critical role in the production of cytokines and downstream signaling events leading to inflammation. Apigetrin significantly downregulated the phosphorylation of JNK and p38, but did not affect the phosphorylation of ERK in the LPS-stimulated cells. These findings indicate the correlation between the anti-inflammatory activity of NF-κB and the MAPK signaling pathway. Thus, our overall finding suggests that apigetrin has anti-inflammatory effects and it can be considered for further drug design on L6 skeletal muscle cells.
RESUMO
Inflammation is a multifaceted response of the immune system at the site of injury or infection caused by pathogens or stress via immune cells. Due to the adverse effects of chemical drugs, plant-based compounds are gaining interest in current research. Prunetinoside or prunetin-5-O-glucoside (PUG) is a plant-based active compound, which possesses anti-inflammatory effects on immune cells. In this study, we investigate the effect of PUG on mouse macrophage RAW264.7 cells with or without stimulation of lipopolysaccharide (LPS). Cytotoxicity results showed that PUG is non-cytotoxic to the cells and it reversed the cytotoxicity in LPS-stimulated cells. The levels of nitric oxide (NO) and interleukin-6 (IL-6) were determined using a NO detection kit and IL-6 ELISA kit, respectively, and showed a significant decrease in NO and IL-6 in PUG-treated cells. Western blot and qRT-PCR were performed for the expression of two important pro-inflammatory cytokines, COX2 and iNOS, and found that their expression was downregulated in a dose-dependent manner. Other pro-inflammatory cytokines, such as IL-1ß, IL-6, and TNFα, had reduced mRNA expression after PUG treatment. Furthermore, a Western blot was performed to calculate the expression of NF-κB and MAPK pathway proteins. The results show that PUG administration dramatically reduced the phosphorylation of p-Iκbα, p-NF-κB 65, and p-JNK. Remarkably, after PUG treatment, p-P38 and p-ERK remain unchanged. Furthermore, docking studies revealed that PUG is covalently linked to NF-κB and suppresses inflammation. In conclusion, PUG exerted the anti-inflammatory mechanism by barring the NF-κB pathway and activating JNK. Thus, prunetinoside could be adopted as a therapeutic compound for inflammatory-related conditions.
Assuntos
Cumarínicos , Macrófagos , NF-kappa B , Animais , Anti-Inflamatórios/uso terapêutico , Cumarínicos/farmacologia , Citocinas/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Interleucina-6/metabolismo , Lipopolissacarídeos/antagonistas & inibidores , Lipopolissacarídeos/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , NF-kappa B/metabolismo , Óxido Nítrico/metabolismo , Células RAW 264.7RESUMO
Inflammatory disorders of the skin are major public health concerns due to constant exposure to external stimuli. Skin cells are associated with prominent immune mechanisms to defend against adverse reactions. In the present study, the antiinflammatory properties of membranefree stem cell components (MFSCC) from adipose tissuederived stem cells (ADSCs) and their basic preventive effects on skin wrinkle formation using human keratinocytes (HaCaT) and fibroblast (Detroit 551) cells, were investigated. Initially, a human inflammation antibody array was used on tumor necrosis factorα (TNFα)/interferonγ (IFNγ)induced and MFSCCtreated HaCaT cells. Array spots revealed three differential proteins, interleukin (IL)1 F1 (IL1α), IL6, and TIMP2. Of these three proteins, IL6 was significantly downregulated by MFSCC treatment. Western blot analysis revealed that IL6 and its key downstream proteins JAK2 and STAT3 were suppressed in MFSCCtreated HaCaT cells. Further analysis revealed that MFSCC decreased the expression of TNFα/IFNγinduced phosphorylated (p)IκBα, pp65, pJNK, pERK, and pp38 by inhibiting the activation of MAPK and NFκB pathways. Treatment of Detroit 551 cells with MFSCC increased COL1A1 and elastin but suppressed matrix metalloproteinase (MMP)1 and MMP8 protein expression levels. Collectively, these data indicated that MFSCC exhibited a primary inhibitory effect on inflammation and wrinkle formation in skin. These results provide a basis for further extensive studies and application of MFSCC in treating skin inflammatory disorders.
Assuntos
Tecido Adiposo/química , Inflamação/metabolismo , Queratinócitos/metabolismo , Células-Tronco/metabolismo , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Colágeno/metabolismo , Elastina/metabolismo , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Humanos , Interferon gama/farmacologia , Interleucina-6/metabolismo , Janus Quinase 2/metabolismo , Queratinócitos/efeitos dos fármacos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Fosforilação/efeitos dos fármacos , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/efeitos dos fármacos , Pele/efeitos dos fármacos , Fator de Necrose Tumoral alfa/farmacologiaRESUMO
Understanding the triggers and therapeutic targets for gastric cancer, one of the most common cancers worldwide, can provide helpful information for the development of therapeutics. RNA sequencing technology can be utilized to identify complex disease targets and therapeutic applications. In the present study, we aimed to establish the pharmacological target of Kynurenic acid (KYNA) for gastric cancer AGS cells and to identify the biological network. RNA sequencing identified differentially expressed genes (DEGs) between KYNA-treated and untreated cells. A total of 278 genes were differentially expressed, of which 120 genes were up-regulated, and 158 genes were down-regulated. Gene ontology results confirmed that KYNA had effects such as a reduction in genes related to DNA replication and nucleosome organization on AGS cells. Protein-protein interaction was confirmed through STRING analysis, and it was confirmed that cancer cell growth and proliferation were inhibited through KEGG, Reactome, and Wiki pathway analysis, and various signaling pathways related to cancer cell death were induced. It was confirmed that KYNA treatment reduced the gene expression of cancer-causing AP-1 factors (Fos, Jun, ATF, and JDP) in AGS cell lines derived from gastric cancer. Overall, using next-generation transcriptome sequencing data and bioinformatics tools, we confirmed that KYNA had an apoptosis effect by inducing changes in various genes, including factor AP-1, in gastric cancer AGS cells. This study can identify pharmacological targets for gastric cancer treatment and provide a valuable resource for drug development.
Assuntos
Neoplasias Gástricas , Transcriptoma , Humanos , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética , Ácido Cinurênico , Fator de Transcrição AP-1/genética , Biomarcadores , Biologia Computacional/métodos , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão GênicaRESUMO
Despite various treatment options for canine atopic dermatitis (cAD), therapeutic limitations still exist, including adverse effects and low absorption ratios. This study evaluated the effects of a membrane-free stem cell extract (MFSCE) on the clinical signs of atopic dogs. Thirty client-owned dogs previously diagnosed with cAD were separated into placebo (n = 10) and MFSCE-treated groups (n = 20). The dogs were treated with a cream (MFSCE and placebo) via dermal administration twice daily for 14 days, and the clinical response was recorded on days 0, 7, and 14. The MFSCE-treated group showed significantly decreased severity of pruritus on day 14 compared to that on day 0. In addition, the erythema, pigmentation, skin dryness, and thickness were remarkably decreased in the MFSCE-treated group on day 14 compared to those on day 0 whereas no significant changes were observed in the placebo-treated group. No general clinical signs or adverse effects were observed in this study. These results suggest that MFSCE could be a surrogate treatment option for cAD.
RESUMO
Many different types of programmed cell death (PCD) have been identified, including apoptosis and necroptosis. Apoptosis is a type of cell death that is controlled by various genes. It is in charge of eliminating aberrant cells such as cancer cells, replenishing normal cells, and molding the body as it develops. Necroptosis is a type of programmed cell death that combines necrosis and apoptosis. In other words, it takes on a necrotic appearance, although cells die in a controlled manner. Various investigations of these two pathways have revealed that caspase-8, receptor-interacting serine/threonine-protein kinase 1 (RIPK1), and RIPK3 are crucial proteins in charge of the switching between these two pathways, resulting in the activation or inhibition of necroptosis. In this review, we have summarized the key proteins between apoptosis and necroptosis.
Assuntos
Apoptose/fisiologia , Necroptose/fisiologia , Animais , Caspase 8/metabolismo , Humanos , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Transdução de Sinais/fisiologiaRESUMO
The antioxidant and anti-inflammatory potentials of polyphenols contained in Gynura procumbens (GP) extract were systematically analyzed. Polyphenols in GP were analyzed for nine peaks using high-performance liquid chromatography (HPLC) combined with mass spectrometry (MS), and quantitatively determined through each standard. A total of nine polyphenolic compounds were identified in the samples and their MS data were tabulated. To determine the potential of bioactive ingredients targeting DPPH and COX-2, we analyzed them by ultrafiltration combined with LC. The results identified the major compounds exhibiting binding affinity for DPPH and COX-2. Caffeic acid, kynurenic acid, and chlorogenic acid showed excellent binding affinity to DPPH and COX-2, suggesting that they can be considered as major active compounds. Additionally, the anti-inflammatory effect of GP was confirmed in vitro. This study will not only be used to provide basic data for the application of GP to the food and pharmaceutical industries, but will also provide information on effective screening methods for other medicinal plants.
Assuntos
Anti-Inflamatórios/análise , Antioxidantes/análise , Asteraceae/química , Ciclo-Oxigenase 2/metabolismo , Polifenóis/análise , Animais , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Compostos de Bifenilo/metabolismo , Cromatografia Líquida de Alta Pressão , Avaliação Pré-Clínica de Medicamentos , Humanos , Ligantes , Lipopolissacarídeos/efeitos adversos , Espectrometria de Massas , Camundongos , Picratos/metabolismo , Extratos Vegetais/química , Polifenóis/farmacologia , Células RAW 264.7RESUMO
Scutellarein (SCU) is a well-known flavone with a broad range of biological activities against several cancers. Human hepatocellular carcinoma (HCC) is major cancer type due to its poor prognosis even after treatment with chemotherapeutic drugs, which causes a variety of side effects in patients. Therefore, efforts have been made to develop effective biomarkers in the treatment of HCC in order to improve therapeutic outcomes using natural based agents. The current study used SCU as a treatment approach against HCC using the HepG2 cell line. Based on the cell viability assessment up to a 200 µM concentration of SCU, three low-toxic concentrations of (25, 50, and 100) µM were adopted for further investigation. SCU induced cell cycle arrest at the G2/M phase and inhibited cell migration and proliferation in HepG2 cells in a dose-dependent manner. Furthermore, increased PTEN expression by SCU led to the subsequent downregulation of PI3K/Akt/NF-κB signaling pathway related proteins. In addition, SCU regulated the metastasis with EMT and migration-related proteins in HepG2 cells. In summary, SCU inhibits cell proliferation and metastasis in HepG2 cells through PI3K/Akt/NF-κB signaling by upregulation of PTEN, suggesting that SCU might be used as a potential agent for HCC therapy.
Assuntos
Apigenina/farmacologia , Carcinoma Hepatocelular/tratamento farmacológico , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , NF-kappa B/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Apoptose , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Movimento Celular , Proliferação de Células , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , NF-kappa B/genética , PTEN Fosfo-Hidrolase/genética , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas c-akt/genética , Células Tumorais CultivadasRESUMO
Iridin is a natural flavonoid found in Belamcanda chinensis documented for its broad spectrum of biological activities like antioxidant, antitumor, and antiproliferative effects. In the present study, we have investigated the antitumor potential of iridin in AGS gastric cancer cells. Iridin treatment decreases AGS cell growth and promotes G2/M phase cell cycle arrest by attenuating the expression of Cdc25C, CDK1, and Cyclin B1 proteins. Iridin-treatment also triggered apoptotic cell death in AGS cells, which was verified by cleaved Caspase-3 (Cl- Caspase-3) and poly ADP-ribose polymerase (PARP) protein expression. Further apoptotic cell death was confirmed by increased apoptotic cell death fraction shown in allophycocyanin (APC)/Annexin V and propidium iodide staining. Iridin also increased the expression of extrinsic apoptotic pathway proteins like Fas, FasL, and cleaved Caspase-8 in AGS cells. On the contrary, iridin-treated AGS cells did not show variations in proteins related to an intrinsic apoptotic pathway such as Bax and Bcl-xL. Besides, Iridin showed inhibition of PI3K/AKT signaling pathways by downregulation of (p-PI3K, p-AKT) proteins in AGS cells. In conclusion, these data suggest that iridin has anticancer potential by inhibiting PI3K/AKT pathway. It could be a basis for further drug design in gastric cancer treatment.
Assuntos
Apoptose/efeitos dos fármacos , Flavonoides/farmacologia , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Pontos de Checagem da Fase M do Ciclo Celular/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Neoplasias Gástricas/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Flavonoides/química , Humanos , Modelos Biológicos , Proteínas de Neoplasias/metabolismo , Transdução de Sinais/efeitos dos fármacosRESUMO
Gastric cancer (GC) is an aggressive malignancy with increased mortality rate and low treatment options. Increasing evidence suggests that network pharmacology will be a novel method for identifying the systemic mechanism of therapeutic compounds in diseases like cancer. The current study aimed to use a network pharmacology approach to establish the predictive targets of prunetin-5-O-glucoside (PG) against gastric cancer and elucidate its biological mechanisms. Primarily, genes associated with the pathogenesis of GC was identified from the DiGeNET database and targets of PG was obtained from the Swiss target prediction database. In total, 65 correlative hits were identified as anti-gastric cancer targets of PG. Functional enrichment and pathway analysis revealed significant biological mechanisms of the targets. Interaction of protein network and cluster analysis using STRING resulted in three crucial interacting hub targets namely, HSP90AA1, CDK2, and MMP1. Additionally, the in vitro cytotoxic potential of PG was assessed on three gastric cancer cells (AGS, MKN-28, and SNU-484). Furthermore, the crucial targets were validated using molecular docking, followed by their expressions being evaluated by western blot and Human Protein Atlas. The findings indicate that the pharmacological action of PG against GC might be associated with the regulation of three core targets: HSP90AA1, CDK2, and MMP1. Thus, the network pharmacology undertaken in the current study established the core active targets of PG, which may be extensively applied with further validations for treatment in GC.
RESUMO
Aging is associated with loss of muscle mass and strength that leads to a condition termed sarcopenia. Impaired conditions, morbidity, and malnutrition are the factors of devaluation of muscle fibers in aged animals. Satellite cells play an important role in maintaining muscle homeostasis during tissue regeneration and repair. Proteomic profiling on the skeletal muscle tissues of different age group rats helps to determine the differentially expressed (DE) proteins, which may eventually lead to the development of biomarkers in treating the conditions of sarcopenia. In this study, nanoscale liquid chromatography coupled to tandem mass spectrometry (nano-LC-MS/MS) analysis was implemented in the calf tissues of young and old groups of rats. The mass spectrometry (MS) analysis revealed the presence of 335 differentially expressed proteins between the two different age conditions, among which those based on log-fold change 25 proteins were upregulated and 77 were downregulated. The protein-protein interaction network analysis revealed 18 upregulated proteins with three distinct interconnected networks and 57 downregulated proteins with two networks. Further, gene ontology (GO) enrichment analysis showed the biological process, cellular component, and molecular function of the differential proteins. Pathway enrichment analysis of the DE proteins identified nine significantly enriched pathways with a list of eight significant genes (Cryab, Hspb2, Acat1, Ak1, Adssl1, Anxa5, Gys1, Ogdh, Gc, and Adssl1). Quantification of significant genes by quantitative real-time polymerase chain reaction (qRT-PCR) confirmed the downregulation at the mRNA level. Western blot analysis of their protein expression showed concordant results on two candidate proteins (Ogdh and annexin 5) confirming their differential regulation between the two age groups of rats. Thus, these proteomic approaches on young and aged rats provide insights into the development of protein targets in the treatment of sarcopenia (muscle loss).
RESUMO
Hepatocellular carcinoma is recognized as one of the most frequently occurring malignant types of liver cancer globally, making the identification of biomarkers critically important. The aim of the present study was to identify the genes involved in the anticancer effects of flavonoid compounds so that they may be used as targets for cancer treatment. Sinensetin (SIN), an isolated polymethoxyflavone monomer compound, possesses broad antitumor activities in vitro. Therefore, the identification of a transcriptome profile on the condition of cells treated with SIN may aid to better understand the genes involved and its mechanism of action. Genomic profiling studies of cancer are increasing rapidly in order to provide gene expression data that can reveal prognostic biomarkers to combat liver cancer. In the present study, high-throughput RNA sequencing (RNA-seq) was performed to reveal differential gene expression patterns between SIN-treated and SIN-untreated human liver cancer HepG2 cells. A total of 43 genes were identified to be differentially expressed (39 downregulated and 4 upregulated in the SIN-treated group compared with the SIN-untreated group). An extensive network analysis for these 43 genes resulted in the identification of 10 upregulated highly interconnected hub genes that contributed to the progression of cancer. Functional enrichment analysis of these 10 hub genes revealed their involvement in the regulation of apoptotic processes, immune response and tumor necrosis factor production. Additionally, the mRNA expression levels of these 10 genes were evaluated using reverse transcription-quantitative PCR, and the results were consistent with the RNA-seq data. Overall, the results of the present study revealed differentially expressed genes involved in cancer after SIN treatment in HepG2 cells and may help to develop strategies targeting these genes for treating liver cancer.