Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 151
Filtrar
1.
ACS Nano ; 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39248519

RESUMO

Molecular-profiling-based cancer diagnosis has significant implications for predicting disease prognosis and selecting targeted therapeutic interventions. The analysis of cancer-derived extracellular vesicles (EVs) provides a noninvasive and sequential method to assess the molecular landscape of cancer. Here, we developed an all-in-one fusogenic nanoreactor (FNR) encapsulating DNA-fueled molecular machines (DMMs) for the rapid and direct detection of EV-associated microRNAs (EV miRNAs) in a single step. This platform was strategically designed to interact selectively with EVs and induce membrane fusion under a specific trigger. After fusion, the DMMs recognized the target miRNA and initiated nonenzymatic signal amplification within a well-defined reaction volume, thus producing an amplified fluorescent signal within 30 min. We used the FNRs to analyze the unique expression levels of three EV miRNAs in various biofluids, including cell culture, urine, and plasma, and obtained an accuracy of 86.7% in the classification of three major breast cancer (BC) cell lines and a diagnostic accuracy of 86.4% in the distinction between patients with cancer and healthy donors. Notably, a linear discriminant analysis revealed that increasing the number of miRNAs from one to three improved the accuracy of BC patient discrimination from 78.8 to 95.4%. Therefore, this all-in-one diagnostic platform performs nondestructive EV processing and signal amplification in one step, providing a straightforward, accurate, and effective individual EV miRNA analysis strategy for personalized BC treatment.

2.
Biosens Bioelectron ; 258: 116347, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38723332

RESUMO

Monitoring drug efficacy is significant in the current concept of companion diagnostics in metastatic breast cancer. Trastuzumab, a drug targeting human epidermal growth factor receptor 2 (HER2), is an effective treatment for metastatic breast cancer. However, some patients develop resistance to this therapy; therefore, monitoring its efficacy is essential. Here, we describe a deep learning-assisted monitoring of trastuzumab efficacy based on a surface-enhanced Raman spectroscopy (SERS) immunoassay against HER2-overexpressing mouse urinary exosomes. Individual Raman reporters bearing the desired SERS tag and exosome capture substrate were prepared for the SERS immunoassay; SERS tag signals were collected to prepare deep learning training data. Using this deep learning algorithm, various complicated mixtures of SERS tags were successfully quantified and classified. Exosomal antigen levels of five types of cell-derived exosomes were determined using SERS-deep learning analysis and compared with those obtained via quantitative reverse transcription polymerase chain reaction and western blot analysis. Finally, drug efficacy was monitored via SERS-deep learning analysis using urinary exosomes from trastuzumab-treated mice. Use of this monitoring system should allow proactive responses to any treatment-resistant issues.


Assuntos
Biomarcadores Tumorais , Técnicas Biossensoriais , Neoplasias da Mama , Aprendizado Profundo , Exossomos , Receptor ErbB-2 , Análise Espectral Raman , Trastuzumab , Trastuzumab/uso terapêutico , Animais , Exossomos/química , Feminino , Camundongos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/urina , Análise Espectral Raman/métodos , Humanos , Biomarcadores Tumorais/urina , Imunoensaio/métodos , Antineoplásicos Imunológicos/uso terapêutico
3.
ACS Nano ; 18(6): 4847-4861, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38189789

RESUMO

Infectious diseases pose persistent threats to public health, demanding advanced vaccine technologies. Nanomaterial-based delivery systems offer promising solutions to enhance immunogenicity while minimizing reactogenicity. We introduce a self-assembled vaccine (SAV) platform employing antigen-polymer conjugates designed to facilitate robust immune responses. The SAVs exhibit efficient cellular uptake by dendritic cells (DCs) and macrophages, which are crucial players in the innate immune system. The high-density antigen presentation of this SAV platform enhances the affinity for DCs through multivalent recognition, significantly augmenting humoral immunity. SAV induced high levels of immunoglobulin G (IgG), IgG1, and IgG2a, suggesting that mature DCs efficiently induced B cell activation through multivalent antigen recognition. Universality was confirmed by applying it to respiratory viruses, showcasing its potential as a versatile vaccine platform. Furthermore, we have also demonstrated strong protection against influenza A virus infection with SAV containing hemagglutinin, which is used in influenza A virus subunit vaccines. The efficacy and adaptability of this nanostructured vaccine present potential utility in combating infectious diseases.


Assuntos
Doenças Transmissíveis , Vírus da Influenza A , Vacinas contra Influenza , Nanoestruturas , Humanos , Antígenos , Imunidade Humoral , Imunoglobulina G , Anticorpos Antivirais , Adjuvantes Imunológicos
4.
Small ; 20(4): e2305748, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37712175

RESUMO

The rapid transmission and numerous re-emerging human influenza virus variants that spread via the respiratory system have led to severe global damage, emphasizing the need for detection tools that can recognize active and intact virions with infectivity. Here, this work presents a plasmonic vesicle-mediated fusogenic immunoassay (PVFIA) comprising gold nanoparticle (GNP) encapsulating fusogenic polymeric vesicles (plasmonic vesicles; PVs) for the label-free and colorimetric detection of influenza A virus (IAV). The PVFIA combines two sequential assays: a biochip-based immunoassay for target-specific capture and a PV-induced fusion assay for color change upon the IAV-PV fusion complex formation. The PVFIA demonstrates excellent specificity in capturing the target IAV, while the fusion conditions and GNP induce a significant color change, enabling visual detection. The integration of two consecutive assays results in a low detection limit (100.7919 EID50 mL-1 ) and good reliability (0.9901), indicating sensitivity that is 104.208 times higher than conventional immunoassay. Leveraging the PV viral membrane fusion activity renders the PVFIA promising for point-of-care diagnostics through colorimetric detection. The innovative approach addresses the critical need for detecting active and intact virions with infectivity, providing a valuable tool with which to combat the spread of the virus.


Assuntos
Vírus da Influenza A , Nanopartículas Metálicas , Humanos , Colorimetria/métodos , Ouro , Reprodutibilidade dos Testes
5.
Small ; 20(13): e2307262, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37963850

RESUMO

Breast cancer (BC) is a major global health problem, with ≈20-25% of patients overexpressing human epidermal growth factor receptor 2 (HER2), an aggressive marker, yet access to early detection and treatment varies across countries. A low-cost, equipment-free, and easy-to-use polydiacetylene (PDA)-based colorimetric sensor is developed for HER2-overexpressing cancer detection, designed for use in low- and middle-income countries (LMICs). PDA nanoparticles are first prepared through thin-film hydration. Subsequently, hydrophilic magnetic nanoparticles and HER2 antibodies are sequentially conjugated to them. The synthesized HER2-MPDA can be concentrated and separated by a magnetic field while inheriting the optical characteristics of PDA. The specific binding of HER2 antibody in HER2-MPDA to HER2 receptor in HER2-overexpressing exosomes causes a blue-to-red color change by altering the molecular structure of the PDA backbone. This colorimetric sensor can simultaneously separate and detect HER2-overexpressing exosomes. HER2-MPDA can detect HER2-overexpressing exosomes in the culture medium of HER2-overexpressing BC cells and in mouse urine samples from a HER2-overexpressing BC mouse model. It can selectively isolate and detect only HER2-overexpressing exosomes through magnetic separation, and its detection limit is found to be 8.5 × 108 particles mL-1. This colorimetric sensor can be used for point-of-care diagnosis of HER2-overexpressing BC in LMICs.


Assuntos
Neoplasias da Mama , Compostos de Diazônio , Exossomos , Nanopartículas , Polímero Poliacetilênico , Piridinas , Humanos , Animais , Camundongos , Feminino , Colorimetria , Exossomos/metabolismo , Neoplasias da Mama/metabolismo , Anticorpos , Fenômenos Magnéticos
6.
Nat Commun ; 14(1): 8153, 2023 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-38071202

RESUMO

Accurate diagnosis of Alzheimer's disease (AD) in its earliest stage can prevent the disease and delay the symptoms. Therefore, more sensitive, non-invasive, and simple screening tools are required for the early diagnosis and monitoring of AD. Here, we design a self-assembled nanoparticle-mediated amplified fluorogenic immunoassay (SNAFIA) consisting of magnetic and fluorophore-loaded polymeric nanoparticles. Using a discovery cohort of 21 subjects, proteomic analysis identifies adenylyl cyclase-associated protein 1 (CAP1) as a potential tear biomarker. The SNAFIA demonstrates a low detection limit (236 aM), good reliability (R2 = 0.991), and a wide analytical range (0.320-1000 fM) for CAP1 in tear fluid. Crucially, in the verification phase with 39 subjects, SNAFIA discriminates AD patients from healthy controls with 90% sensitivity and 100% specificity in under an hour. Utilizing tear fluid as a liquid biopsy, SNAFIA could potentially aid in long-term care planning, improve clinical trial efficiency, and accelerate therapeutic development for AD.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/metabolismo , Proteômica , Reprodutibilidade dos Testes , Imunoensaio , Diagnóstico Precoce , Biomarcadores/metabolismo , Peptídeos beta-Amiloides
7.
Biosens Bioelectron ; 239: 115592, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37603987

RESUMO

Exosomes are useful for cancer diagnosis and monitoring. However, clinical samples contain impurities that complicate direct analyses of cancer-derived exosomes. Therefore, a microfluidic chip-based magnetically labeled exosome isolation system (MEIS-chip) was developed as a lab-on-a-chip platform for human epidermal growth factor receptor 2 (HER2)-positive cancer diagnosis and monitoring. Various magnetic nanoclusters (MNCs) were synthesized with different degrees of magnetization, and antibodies were introduced to capture HER2-overexpressing and common exosomes using immunoaffinity. MNC-bonded exosomes were separated into different exits according to their magnetization degrees. The MEIS-chip efficiently separated HER2-overexpressing exosomes from common exosomes that did not contain disease-related information. The simultaneous separation of HER2-and non-HER2-overexpressing exosomes provided a means of analyzing high-purity HER2-overexpressing exosomes while minimizing the contribution of non-target exosomes, reducing misdiagnosis risk. Notably, common exosomes served as a negative control for monitoring real-time changes in HER2 expression. These findings support the application of MEIS-chip for cancer diagnosis and treatment monitoring via effective exosome isolation.


Assuntos
Técnicas Biossensoriais , Exossomos , Neoplasias , Humanos , Microfluídica , Neoplasias/diagnóstico , Anticorpos
8.
Small ; 19(26): e2207117, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36960666

RESUMO

African swine fever virus (ASFV) is a severe and persistent threat to the global swine industry. As there are no vaccines against ASFV, there is an immense need to develop easy-to-use, cost-effective, and rapid point-of-care (POC) diagnostic platforms to detect and prevent ASFV outbreaks. Here, a novel POC diagnostic system based on affinity column chromatography for the optical detection of ASFV is presented. This system employs an on-particle hairpin chain reaction to sensitize magnetic nanoclusters with long DNA strands in a target-selective manner, which is subsequently fed into a column chromatography device to produce quantitatively readable and colorimetric signals. The detection approach does not require expensive analytical apparatus or immobile instrumentation. The system can detect five genes constituting the ASFV whole genome with a detection limit of ≈19.8 pm in swine serum within 30 min at laboratory room temperature. With an additional pre-amplification step using polymerase chain reaction (PCR), the assay is successfully applied to detect the presence of ASFV in 30 suspected swine samples with 100% sensitivity and specificity, similar to quantitative PCR. Thus, this simple, inexpensive, portable, robust, and customizable platform for the early detection of ASFV can facilitate the timely surveillance and implementation of control measures.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Suínos , Animais , Vírus da Febre Suína Africana/genética , Febre Suína Africana/diagnóstico , Reação em Cadeia da Polimerase/métodos , Cromatografia de Afinidade , Sensibilidade e Especificidade , Fenômenos Magnéticos
9.
Analyst ; 147(22): 5028-5037, 2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-36190457

RESUMO

The continued uncertainty of emerging infectious viral diseases has led to an extraordinary urgency to develop advanced molecular diagnostic tests that are faster, more reliable, simpler to use, and readily available than traditional methods. This study presents a system that can accurately and rapidly trace viral nucleic acids by employing flap endonuclease 1 (FEN1)-assisted specific DNA cleavage reactions and surface-enhanced Raman scattering (SERS)-based analysis. The designed Raman tag-labeled 5'- and 3'-flap provider DNA yielded structurally defined DNA substrates on magnetic nanoparticle surfaces when a target was present. The FEN1 enzyme subsequently processes the substrates formed via an invasive cleavage reaction, producing 5'-flap DNA products. Magnetic separation allows efficient purification of flap products from reaction mixtures. The isolated solution was directly applied onto high aspect-ratio plasmonic silver nanopillars serving as SERS-active substrates to induce amplified SERS signals. We verified the developed SERS-based sensing system using a synthetic target complementary to an avian influenza A (H9N2) virus gene and examined the detection performance of the system using complementary DNA (cDNA) derived from H9N2 viral RNA. As a result, we could detect a synthetic target with a detection limit of 41.1 fM with a single base-pair discrimination ability and achieved multiplexed detection capability for two targets. Using cDNA samples from H9N2 viruses, we observed a high concordance of R2 = 0.917 between the data obtained from SERS and the quantitative polymerase chain reaction. We anticipate that this enzyme-assisted SERS sensor may provide insights into the development of high-performance molecular diagnostic tools that can respond rapidly to viral pathogens.


Assuntos
Vírus da Influenza A Subtipo H9N2 , Nanopartículas Metálicas , Ácidos Nucleicos , Animais , Análise Espectral Raman/métodos , Ouro/química , Endonucleases Flap , DNA Complementar , DNA/análise , Nanopartículas Metálicas/química
10.
Int J Mol Sci ; 23(18)2022 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-36142476

RESUMO

The development of a strategy to investigate interfacial phenomena at lipid membranes is practically useful because most essential biomolecular interactions occur at cell membranes. In this study, a colorimetric method based on cysteine-encapsulated liposomes was examined using gold nanoparticles as a probe to provide a platform to report an enzymatic activity at lipid membranes. The cysteine-encapsulated liposomes were prepared with varying ratios of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and cholesterol through the hydration of lipid films and extrusions in the presence of cysteine. The size, composition, and stability of resulting liposomes were analyzed by scanning electron microscopy (SEM), dynamic light scattering (DLS), nuclear magnetic resonance (NMR) spectroscopy, and UV-vis spectrophotometry. The results showed that the increased cholesterol content improved the stability of liposomes, and the liposomes were formulated with 60 mol % cholesterol for the subsequent experiments. Triton X-100 was tested to disrupt the lipid membranes to release the encapsulated cysteine from the liposomes. Cysteine can induce the aggregation of gold nanoparticles accompanying a color change, and the colorimetric response of gold nanoparticles to the released cysteine was investigated in various media. Except in buffer solutions at around pH 5, the cysteine-encapsulated liposomes showed the color change of gold nanoparticles only after being incubated with Triton X-100. Finally, the cysteine-encapsulated liposomal platform was tested to report the enzymatic activity of phospholipase A2 that hydrolyzes phospholipids in the membrane. The hydrolysis of phospholipids triggered the release of cysteine from the liposomes, and the released cysteine was successfully detected by monitoring the distinct red-to-blue color change of gold nanoparticles. The presence of phospholipase A2 was also confirmed by the appearance of a peak around 690 nm in the UV-vis spectra, which is caused by the cysteine-induced aggregation of gold nanoparticles. The results demonstrated that the cysteine-encapsulated liposome has the potential to be used to investigate biological interactions occurring at lipid membranes.


Assuntos
Lipossomos , Nanopartículas Metálicas , Colesterol , Cisteína , Dimiristoilfosfatidilcolina , Ouro/química , Lipossomos/química , Nanopartículas Metálicas/química , Octoxinol , Fosfolipases , Fosfolipídeos , Fosforilcolina
11.
J Mater Chem B ; 10(28): 5402-5409, 2022 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-35775434

RESUMO

The low therapeutic efficacy of conventional cancer chemotherapy has been associated with an immunosuppressive tumor microenvironment (TME). Tumor-associated macrophages (TAMs), which display an M2-like phenotype, are abundant in many tumors and facilitate tumor growth and resistance to therapy. Here, we show that poly(L-arginine) (PLR), a cationic poly(amino acid) can induce the polarization of macrophages into the tumor-suppressive M1 phenotype, in vitro. Further, we demonstrate that hyaluronic acid (HA) and PLR-coated manganese dioxide (MnO2) nanoparticles (hpMNPs) display efficient anti-cancer effects by upregulating nitric oxide (NO) production. Surface modification with biocompatible HA reduced the cytotoxicity of the cationic PLR. Additionally, manganese ions released from these nanoparticles by the high concentrations of glutathione (GSH) in the TME increased iNOS expression level in macrophages and enhanced the performance of T1 weighted magnetic resonance imaging. Particularly, our results illustrate the therapeutic effects, such as growth inhibition and apoptosis of tumor cells, of hpMNP treated macrophages. Therefore, the newly designed multifunctional PLR-assisted MNPs may facilitate the polarization of M2 macrophages into the M1 phenotype, which can mediate NO-dependent anticancer immunotherapy.


Assuntos
Compostos de Manganês , Nanopartículas , Aminoácidos , Cátions , Linhagem Celular Tumoral , Ácido Hialurônico/química , Imunoterapia , Imageamento por Ressonância Magnética , Manganês , Compostos de Manganês/química , Compostos de Manganês/farmacologia , Nanopartículas/química , Óxido Nítrico , Óxidos/química , Óxidos/farmacologia
12.
Biosens Bioelectron ; 212: 114407, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35623252

RESUMO

Avian influenza virus (AIV) causes acute infectious diseases in poultry, critically impacting food supply. Highly pathogenic avian influenza viruses (HPAIVs), in particular, cause morbidity and mortality, resulting in significant economic losses in the poultry industry. To prevent the spread of HPAIVs, detection at early stages is critical to implement effective countermeasures such as quarantine and isolation. Through a viral fusion mechanism, cell-mimetic nanoparticles (CMPs), developed in the current study, can rapidly detect HPAIV and low pathogenic AIV (LPAIV). The CMPs comprise polymeric nanoparticles, which are constructed using sialic acid and fluorescence resonance energy transfer (FRET) dye pairs that expose the FRET off signal in response to LPAIV and HPAIV, after activation by enzymatic cleavage in the endosomal environment. The CMPs detect a wide variety of LPAIVs and HPAIVs in biological environments. Additionally, the cross-reactivity of CMPs is determined by testing their function with different viral species. Therefore, these findings demonstrate the significant potential of the proposed strategy for mimicking viral infection in vitro and using them as a highly effective diagnostic assay to rapidly detect LPAIV and HPAIV, preventing economic losses associated with viral outbreaks.


Assuntos
Técnicas Biossensoriais , Vírus da Influenza A , Influenza Aviária , Animais , Galinhas , Influenza Aviária/diagnóstico , Aves Domésticas
13.
Biosens Bioelectron ; 207: 114143, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35286944

RESUMO

Breast cancer is one of the most common cancers globally. Because the 5-year survival rate of breast cancer greatly increases when treated in its initial stage, the importance of early detection has been increasing. Herein, one-spot multiple breast cancer circulating microRNA (miRNA) detection via surface-enhanced Raman spectroscopy (SERS) with seed-mediated grown Ag nanopillars (SMGAPs) is described. The electrochemical reduction on the pre-distributed 40 nm gold nanoparticle seeds (sGNP) acted as scaffolds for silver ion growth, and a nanopillar-shaped silver structure was successfully grown on the gold substrate surface. The synthesized structure showed uniform and remarkably increased signal enhancement for malachite green isothiocyanate. Based on this consistency, two circulating miRNA markers for breast cancer (miR-21 and miR-155) were used as the SERS diagnostic target. The limit of detection (LOD) of each labeled target was 451 zmol and 1.65 amol respectively. Moreover, miRNAs in four types of cancer cell extracts (HCC1143, HCC1954, MDA-MB-231, MCF-7) were sorted by miR-21 and miR-155 copies. Finally, quantitative analysis of miRNA in urine was successful compared to that in the healthy group.


Assuntos
Técnicas Biossensoriais , Neoplasias da Mama , MicroRNA Circulante , Nanopartículas Metálicas , MicroRNAs , Técnicas Biossensoriais/métodos , Neoplasias da Mama/diagnóstico , Feminino , Ouro/química , Humanos , Nanopartículas Metálicas/química , MicroRNAs/análise , MicroRNAs/genética , Prata/química , Análise Espectral Raman/métodos
14.
Nano Res ; 15(3): 2254-2262, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34567436

RESUMO

A recurrent pandemic with unpredictable viral nature has implied the need for a rapid diagnostic technology to facilitate timely and appropriate countermeasures against viral infections. In this study, conductive polymer-based nanoparticles have been developed as a tool for rapid diagnosis of influenza A (H1N1) virus. The distinctive property of a conductive polymer that transduces stimulus to respond, enabled immediate optical signal processing for the specific recognition of H1N1 virus. Conductive poly(aniline-co-pyrrole)-encapsulated polymeric vesicles, functionalized with peptides, were fabricated for the specific recognition of H1N1 virus. The low solubility of conductive polymers was successfully improved by employing vesicles consisting of amphiphilic copolymers, facilitating the viral titer-dependent production of the optical response. The optical response of the detection system to the binding event with H1N1, a mechanical stimulation, was extensively analyzed and provided concordant information on viral titers of H1N1 virus in 15 min. The specificity toward the H1N1 virus was experimentally demonstrated via a negative optical response against the control group, H3N2. Therefore, the designed system that transduces the optical response to the target-specific binding can be a rapid tool for the diagnosis of H1N1. Electronic Supplementary Material: Supplementary material (Table S1 and Figs. S1-S8) is available in the online version of this article at 10.1007/s12274-021-3772-6.

15.
Biosens Bioelectron ; 197: 113753, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34741958

RESUMO

Metastasis attributed to approximately 90% of cancer-related deaths; hence, the detection of metastatic tumor-derived components in the blood assists in determining cancer recurrence and patient survival. Microfluidic-based sensors facilitate analysis of small fluid volumes and represent an accurate, rapid, and user-friendly method of field diagnoses. In this study, we have developed a microfluidic chip-based exosomal mRNA sensor (exoNA-sensing chip) for the one-step detection of exosomal ERBB2 in the blood by integrating a microfluidic chip and 3D-nanostructured hydrogels. The exoNA-sensing chip is a vacuum-driven power-free microfluidic chip that can accurately control the flow of trace fluids (<100 µL). The sensing part of the exoNA-sensing chip includes 3D-nanostructured hydrogels capable of detecting ERBB2 and a reference gene by amplifying a fluorescent signal via an enzyme-free catalytic hairpin assembly reaction at room temperature. This hydrogel offers a detection limit of 58.3 fM with good selectivity for target sequences. The performance of the exoNA-sensing chip was evaluated by testing in vitro and in vivo samples and was proven to be effective for cancer diagnosis and liquid biopsies.


Assuntos
Técnicas Biossensoriais , Neoplasias da Mama , Nanoestruturas , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/genética , Feminino , Humanos , Dispositivos Lab-On-A-Chip , RNA Mensageiro/genética
16.
Pharmaceutics ; 13(10)2021 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-34683863

RESUMO

The coronavirus disease (COVID-19) pandemic poses serious global health concerns with the continued emergence of new variants. The periodic outbreak of novel emerging and re-emerging infectious pathogens has elevated concerns and challenges for the future. To develop mitigation strategies against infectious diseases, nano-based approaches are being increasingly applied in diagnostic systems, prophylactic vaccines, and therapeutics. This review presents the properties of various nanoplatforms and discusses their role in the development of sensors, vectors, delivery agents, intrinsic immunostimulants, and viral inhibitors. Advanced nanomedical applications for infectious diseases have been highlighted. Moreover, physicochemical properties that confer physiological advantages and contribute to the control and inhibition of infectious diseases have been discussed. Safety concerns limit the commercial production and clinical use of these technologies in humans; however, overcoming these limitations may enable the use of nanomaterials to resolve current infection control issues via application of nanomaterials as a platform for the diagnosis, prevention, and treatment of viral diseases.

17.
J Mater Chem B ; 9(47): 9658-9669, 2021 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-34647566

RESUMO

Specific interactions between viruses and host cells provide essential insights into material science-based strategies to combat emerging viral diseases. pH-triggered viral fusion is ubiquitous to multiple viral families and is important for understanding the viral infection cycle. Inspired by this process, virus detection has been achieved using nanomaterials with host-mimetic membranes, enabling interactions with amphiphilic hemagglutinin fusion peptides of viruses. Most research has been on designing functional nanoparticles with fusogenic capability for virus detection, and there has been little exploitation of the kinetic stability to alter the ability of nanoparticles to interact with viral membranes and improve their sensing performance. In this study, a homogeneous fluorescent assay using self-assembled polymeric nanoparticles (PNPs) with tunable responsiveness to external stimuli is developed for rapid and straightforward detection of an activated influenza A virus. Dissociation of PNPs induced by virus insertion can be readily controlled by varying the fraction of hydrophilic segments in copolymers constituting PNPs, giving rise to fluorescence signals within 30 min and detection of various influenza viruses, including H9N2, CA04(H1N1), H4N6, and H6N8. Therefore, the designs demonstrated in this study propose underlying approaches for utilizing engineered PNPs through modulation of their kinetic stability for direct and sensitive identification of infectious viruses.


Assuntos
Vírus da Influenza A/isolamento & purificação , Nanopartículas/química , Peptídeos/química , Polietilenoglicóis/química , Proteínas Virais de Fusão/metabolismo , Animais , Carbocianinas/química , Galinhas , Ovos/virologia , Transferência Ressonante de Energia de Fluorescência/métodos , Corantes Fluorescentes/química , Vírus da Influenza A/metabolismo , Limite de Detecção , Fusão de Membrana/efeitos dos fármacos , Membranas Artificiais , Peptídeos/síntese química , Peptídeos/metabolismo , Polietilenoglicóis/síntese química , Polietilenoglicóis/metabolismo
18.
Biosens Bioelectron ; 194: 113576, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34454345

RESUMO

Multipotent adult stem cells (MASCs) derived from Pluripotent stem cells (PSCs) have found widespread use in various applications, including regenerative therapy and drug screening. For these applications, highly pluripotent PSCs need to be selectively separated from those that show low pluripotency for reusage of PSCs, and MASCs need to be collected for further application. Herein, we developed immunomagnetic microfluidic integrated system (IM-MIS) for separation of stem cells depending on potency level. In this system, each stem cell was multiple-separated in microfluidics chip by magnetophoretic mobility of magnetic-activated cells based on the combination of two sizes of magnetic nanoparticles and two different antibodies. Magnetic particles had a difference in the degree of magnetization, and antibodies recognized potency-related surface markers. IM-MIS showed superior cell separation performance than FACS with high throughput (49.5%) in a short time (<15 min) isolate 1 × 107 cells, and higher purity (92.1%) than MACS. IM-MIS had a cell viability of 89.1%, suggesting that IM-MIS had no effect on cell viability during isolation. Furthermore, IM-MIS did not affect the key characteristics of stem cells including its differentiation potency, phenotype, genotype, and karyotype. IM-MIS may offer a new platform for the development of multi-separation systems for diverse stem cell applications.


Assuntos
Técnicas Biossensoriais , Células-Tronco Pluripotentes , Diferenciação Celular , Separação Celular , Microfluídica
19.
Adv Mater ; 33(47): e2005927, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33586180

RESUMO

While the coronavirus disease (COVID-19) accounts for the current global pandemic, the emergence of other unknown pathogens, named "Disease X," remains a serious concern in the future. Emerging or re-emerging pathogens continue to pose significant challenges to global public health. In response, the scientific community has been urged to create advanced platform technologies to meet the ever-increasing needs presented by these devastating diseases with pandemic potential. This review aims to bring new insights to allow for the application of advanced nanomaterials in future diagnostics, vaccines, and antiviral therapies, thereby addressing the challenges associated with the current preparedness strategies in clinical settings against viruses. The application of nanomaterials has advanced medicine and provided cutting-edge solutions for unmet needs. Herein, an overview of the currently available nanotechnologies is presented, highlighting the significant features that enable them to control infectious diseases, and identifying the challenges that remain to be addressed for the commercial production of nano-based products is presented. Finally, to conclude, the development of a nanomaterial-based system using a "One Health" approach is suggested. This strategy would require a transdisciplinary collaboration and communication between all stakeholders throughout the entire process spanning across research and development, as well as the preclinical, clinical, and manufacturing phases.


Assuntos
Antivirais/química , COVID-19/diagnóstico , COVID-19/terapia , Nanoestruturas/química , SARS-CoV-2/efeitos dos fármacos , Animais , Antivirais/farmacologia , Permeabilidade da Membrana Celular , Desenvolvimento de Medicamentos , Humanos , Pandemias , Espécies Reativas de Oxigênio/metabolismo , Propriedades de Superfície , Nanomedicina Teranóstica
20.
Biosens Bioelectron ; 178: 113039, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33524707

RESUMO

As stem cells show great promise in regenerative therapy, stem cell-mediated therapeutic efficacy must be demonstrated through the migration and transplantation of stem cells into target disease areas at the pre-clinical level. In this study, we developed manganese-based magnetic nanoparticles with hollow structures (MnOHo) and modified them with the anti-human integrin ß1 antibody (MnOHo-Ab) to enable the minimal-invasive monitoring of transplanted human stem cells at the pre-clinical level. Compared to common magnetic resonance imaging (MRI)-based stem cell monitoring systems that use pre-labeled stem cells with magnetic particles before stem cell injection, the MnOHo-Ab is a new technology that does not require stem cell modification to monitor the therapeutic capability of stem cells. Additionally, MnOHo-Ab provides improved T1 MRI owing to the hollow structure of the MnOHo. Particularly, the anti-integrin ß1 antibody (Ab) introduced in the MnOHo targets integrin ß1 expressed in the entire stem cell lineage, enabling targeted monitoring regardless of the differentiation stage of the stem cells. Furthermore, we verified that intravenously injected MnOHo-Ab specifically targeted human induced pluripotent stem cells (hiPSCs) that were transferred to mice testes and differentiated into various lineages. The new stem cell monitoring method using MnOHo-Ab demonstrates whether the injected human stem cells have migrated and transplanted themselves in the target area during long-term stem cell regenerative therapy.


Assuntos
Técnicas Biossensoriais , Células-Tronco Pluripotentes Induzidas , Diferenciação Celular , Humanos , Imageamento por Ressonância Magnética , Transplante de Células-Tronco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA