Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cells ; 13(7)2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38607079

RESUMO

Tight junctions are a barrier-forming cell-cell adhesion complex and have been proposed to regulate cell proliferation. However, the underlying mechanisms are not well understood. Here, we used cells deficient in the junction scaffold ZO-1 alone or together with its paralog ZO-2, which disrupts the junctional barrier. We found that ZO-1 knockout increased cell proliferation, induced loss of cell density-dependent proliferation control, and promoted apoptosis and necrosis. These phenotypes were enhanced by double ZO-1/ZO-2 knockout. Increased proliferation was dependent on two transcriptional regulators: YAP and ZONAB. ZO-1 knockout stimulated YAP nuclear translocation and activity without changes in Hippo-dependent phosphorylation. Knockout promoted TANK-binding kinase 1 (TBK1) activation and increased expression of the RhoA activator GEF-H1. Knockdown of ZO-3, another paralog interacting with ZO1, was sufficient to induce GEF-H1 expression and YAP activity. GEF-H1, TBK1, and mechanotransduction at focal adhesions were found to cooperate to activate YAP/TEAD in ZO-1-deficient cells. Thus, ZO-1 controled cell proliferation and Hippo-independent YAP activity by activating a GEF-H1- and TBK1-regulated mechanosensitive signalling network.


Assuntos
Mecanotransdução Celular , Transdução de Sinais , Proliferação de Células , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Fosforilação , Animais , Células Madin Darby de Rim Canino , Cães
2.
Cells ; 11(23)2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36497035

RESUMO

Formation and maintenance of tissue barriers require the coordination of cell mechanics and cell-cell junction assembly. Here, we combined methods to modulate ECM stiffness and to measure mechanical forces on adhesion complexes to investigate how tight junctions regulate cell mechanics and epithelial morphogenesis. We found that depletion of the tight junction adaptor ZO-1 disrupted junction assembly and morphogenesis in an ECM stiffness-dependent manner and led to a stiffness-dependant reorganisation of active myosin. Both junction formation and morphogenesis were rescued by inhibition of actomyosin contractility. ZO-1 depletion also impacted mechanical tension at cell-matrix and E-cadherin-based cell-cell adhesions. The effect on E-cadherin also depended on ECM stiffness and correlated with effects of ECM stiffness on actin cytoskeleton organisation. However, ZO-1 knockout also revealed tension-independent functions of ZO-1. ZO-1-deficient cells could assemble functional barriers at low tension, but their tight junctions remained corrupted with strongly reduced and discontinuous recruitment of junctional components. Our results thus reveal that reciprocal regulation between ZO-1 and cell mechanics controls tight junction assembly and epithelial morphogenesis, and that, in a second, tension-independent step, ZO-1 is required to assemble morphologically and structurally fully assembled and functionally normal tight junctions.


Assuntos
Fosfoproteínas , Junções Íntimas , Junções Íntimas/metabolismo , Proteína da Zônula de Oclusão-1/metabolismo , Fosfoproteínas/metabolismo , Caderinas/metabolismo , Citoesqueleto/metabolismo
3.
J Cell Biol ; 221(11)2022 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-36121394

RESUMO

Phagocytosis requires actin dynamics, but whether actomyosin contractility plays a role in this morphodynamic process is unclear. Here, we show that in the retinal pigment epithelium (RPE), particle binding to Mer Tyrosine Kinase (MerTK), a widely expressed phagocytic receptor, stimulates phosphorylation of the Cdc42 GEF Dbl3, triggering activation of MRCKß/myosin-II and its coeffector N-WASP, membrane deformation, and cup formation. Continued MRCKß/myosin-II activity then drives recruitment of a mechanosensing bridge, enabling cytoskeletal force transmission, cup closure, and particle internalization. In vivo, MRCKß is essential for RPE phagocytosis and retinal integrity. MerTK-independent activation of MRCKß signaling by a phosphomimetic Dbl3 mutant rescues phagocytosis in retinitis pigmentosa RPE cells lacking functional MerTK. MRCKß is also required for efficient particle translocation from the cortex into the cell body in Fc receptor-mediated phagocytosis. Thus, conserved MRCKß signaling at the cortex controls spatiotemporal regulation of actomyosin contractility to guide distinct phases of phagocytosis in the RPE and represents the principle phagocytic effector pathway downstream of MerTK.


Assuntos
Actomiosina , Miotonina Proteína Quinase , Fagocitose , Actinas/metabolismo , Actomiosina/metabolismo , Miosina Tipo II/metabolismo , Miotonina Proteína Quinase/metabolismo , Fagocitose/fisiologia , Proteínas Tirosina Quinases , Receptores Fc , c-Mer Tirosina Quinase/metabolismo
4.
Cell Rep ; 32(3): 107924, 2020 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-32697990

RESUMO

Tight-junction-regulated actomyosin activity determines epithelial and endothelial tension on adherens junctions and drives morphogenetic processes; however, whether or not tight junctions themselves are under tensile stress is not clear. Here, we use a tension sensor based on ZO-1, a scaffolding protein that links the junctional membrane to the cytoskeleton, to determine if tight junctions carry a mechanical load. Our data indicate that ZO-1 is under mechanical tension and that forces acting on ZO-1 are regulated by extracellular matrix (ECM) stiffness and the junctional adhesion molecule JAM-A. JAM-A depletion stimulates junctional recruitment of p114RhoGEF/ARHGEF18, mechanical tension on ZO-1, and traction forces at focal adhesions. p114RhoGEF is required for activation of junctional actomyosin activity and tight junction integrity on stiff but not soft ECM. Thus, junctional ZO-1 bears a mechanical load, and junction assembly is regulated by interplay between the physical properties of the ECM and adhesion-regulated signaling at tight junctions.


Assuntos
Matriz Extracelular/metabolismo , Receptores de Superfície Celular/metabolismo , Junções Íntimas/metabolismo , Proteína da Zônula de Oclusão-1/metabolismo , Actomiosina/metabolismo , Animais , Cães , Células Madin Darby de Rim Canino , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo , Transdução de Sinais , Resistência à Tração
5.
J Radiat Res ; 58(4): 439-445, 2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-28339776

RESUMO

Several forthcoming wireless telecommunication systems will use electromagnetic frequencies at millimeter waves (MMWs), and technologies developed around the 60-GHz band will soon know a widespread distribution. Free nerve endings within the skin have been suggested to be the targets of MMW therapy which has been used in the former Soviet Union. So far, no studies have assessed the impact of MMW exposure on neuronal metabolism. Here, we investigated the effects of a 24-h MMW exposure at 60.4 GHz, with an incident power density (IPD) of 5 mW/cm², on the dopaminergic turnover of NGF-treated PC12 cells. After MMW exposure, both intracellular and extracellular contents of dopamine (DA) and 3,4-dihydroxyphenylacetic acid (DOPAC) were studied using high performance liquid chromatography. Impact of exposure on the dopamine transporter (DAT) expression was also assessed by immunocytochemistry. We analyzed the dopamine turnover by assessing the ratio of DOPAC to DA, and measuring DOPAC accumulation in the medium. Neither dopamine turnover nor DAT protein expression level were impacted by MMW exposure. However, extracellular accumulation of DOPAC was found to be slightly increased, but not significantly. This result was related to the thermal effect, and overall, no evidence of non-thermal effects of MMW exposure were observed on dopamine metabolism.


Assuntos
Dopamina/metabolismo , Radiação Eletromagnética , Fator de Crescimento Neural/farmacologia , Ácido 3,4-Di-Hidroxifenilacético/metabolismo , Animais , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Espaço Extracelular/metabolismo , Células PC12 , Ratos
6.
Bioelectromagnetics ; 37(7): 444-54, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27483046

RESUMO

Millimeter waves (MMW) will be increasingly used for future wireless telecommunications. Previous studies on skin keratinocytes showed that MMW could impact the mRNA expression of Transient Receptor Potential cation channel subfamily Vanilloid, member 2 (TRPV2). Here, we investigated the effect of MMW exposure on this marker, as well as on other membrane receptors such as Transient Receptor Potential cation channel subfamily Vanilloid, member 1 (TRPV1) and purinergic receptor P2X, ligand-gated ion channel, 3 (P2 × 3). We exposed the Neuroscreen-1 cell line (a PC12 subclone), in order to evaluate if acute MMW exposures could impact expression of these membrane receptors at the protein level. Proteotoxic stress-related chaperone protein Heat Shock Protein 70 (HSP70) expression level was also assessed. We used an original high-content screening approach, based on fluorescence microscopy, to allow cell-by-cell analysis and to detect any cell sub-population responding to exposure. Immunocytochemistry was done after 24 h MMW exposure of cells at 60.4 GHz, with an incident power density of 10 mW/cm(2) . Our results showed no impact of MMW exposure on protein expressions of HSP70, TRPV1, TRPV2, and P2 × 3. Moreover, no specific cell sub-populations were found to express one of the studied markers at a different level, compared to the rest of the cell populations. However, a slight insignificant increase in HSP70 expression and an increase in protein expression variability within cell population were observed in exposed cells, but controls showed that this was related to thermal effect. Bioelectromagnetics. 37:444-454, 2016. © 2016 Wiley Periodicals, Inc.


Assuntos
Diferenciação Celular/efeitos da radiação , Regulação da Expressão Gênica/efeitos da radiação , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Membrana Transportadoras/genética , Neurônios/citologia , Ondas de Rádio/efeitos adversos , Animais , Biomarcadores/metabolismo , Neurônios/efeitos da radiação , Células PC12 , Ratos
7.
J Neurosci Methods ; 271: 86-91, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27450924

RESUMO

BACKGROUND: In life sciences, there is a growing need for new informatics tools designed to provide automated solutions in order to analyze big amounts of images obtained from high-throughput imaging systems. Among the most widely used assays in neurotoxicity, endocrinology and brain diseases, the neurite outgrowth assay is popular. NEW METHOD: Cell-to-cell quantification of the main morphological features of neurite outgrowth assays remains very challenging. Here, we provide a new pipeline developed on Fiji software for analysis of series of two-dimensional images. It allows the automated analysis of most of these features. RESULTS: We tested the accuracy and usefulness of the software by confirming the effects of estradiol and hypoxia on in vitro neuronal differentiation, previously published by different authors with manual analysis methods. With this new method, we highlighted original interesting data. COMPARISON WITH EXISTING METHOD(S): The innovation brought by this plugin lies in the fact that it can process multiple images at the same time, in order to obtain: the number of nuclei, the number of neurites, the length of neurites, the number of neurites junctions, the number of neurites branches, the length of each branch, the position of the branch in the image, the angle of each branch, but also the area of each cell and the number of neurites per cell. CONCLUSIONS: This plugin is easy to use, highly sensitive, and allows the experimenter to acquire ready-to-use data coming from a vast amount of images.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Microscopia/métodos , Neuritos , Crescimento Neuronal , Reconhecimento Automatizado de Padrão/métodos , Software , Animais , Hipóxia Celular/fisiologia , Estradiol/farmacologia , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Estrogênios/farmacologia , Imuno-Histoquímica/métodos , Fator de Crescimento Neural/farmacologia , Neuritos/efeitos dos fármacos , Neuritos/fisiologia , Neurogênese/efeitos dos fármacos , Neurogênese/fisiologia , Crescimento Neuronal/efeitos dos fármacos , Crescimento Neuronal/fisiologia , Células PC12 , Ratos
8.
Neurosci Lett ; 618: 58-65, 2016 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-26921450

RESUMO

Technologies for wireless telecommunication systems using millimeter waves (MMW) will be widely deployed in the near future. Forthcoming applications in this band, especially around 60GHz, are mainly developed for high data-rate local and body-centric telecommunications. At those frequencies, electromagnetic radiations have a very shallow penetration into biological tissues, making skin keratinocytes, and free nerve endings of the upper dermis the main targets of MMW. Only a few studies assessed the impact of MMW on neuronal cells, and none of them investigated a possible effect on neuronal differentiation. We used a neuron-like cell line (PC12), which undergoes neuronal differentiation when treated with the neuronal growth factor (NGF). PC12 cells were exposed at 60.4GHz for 24h, at an incident power density averaged over the cell monolayer of 10mW/cm(2). Using a large scale cell-by-cell analysis based on high-content screening microscopy approach, we assessed potential effects of MMW on PC12 neurite outgrowth and cytoskeleton protein expression. No differences were found in protein expression of the neuronal marker ß3-tubulin nor in internal expression control ß-tubulin. On the other hand, our data showed a slight increase, although insignificant, in neurite outgrowth, induced by MMW exposure. However, experimental controls demonstrated that this increase was related to heating.


Assuntos
Neuritos/efeitos da radiação , Ondas de Rádio , Animais , Biomarcadores/metabolismo , Fator de Crescimento Neural/farmacologia , Neuritos/efeitos dos fármacos , Neuritos/fisiologia , Células PC12 , Ratos , Tubulina (Proteína)/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA