Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Microbiol Spectr ; 10(5): e0125222, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36102651

RESUMO

Tuberculosis (TB) remains one of the most important infectious diseases globally. Establishing a resistance profile from the initial TB diagnosis is a priority. Rapid molecular tests evaluate only the most common genetic variants responsible for resistance to certain drugs, and Whole Genome Sequencing (WGS) needs culture prior to next-generation sequencing (NGS), limiting their clinical value. Targeted sequencing (TS) from clinical samples avoids these drawbacks, providing a signature of genetic markers that can be associated with drug resistance and phylogeny. In this study, a proof-of-concept protocol was developed for detecting genomic variants associated with drug resistance and for the phylogenetic classification of Mycobacterium Tuberculosis (Mtb) in sputum samples. Initially, a set of Mtb reference strains from the WHO were sequenced (WGS and TS). The results from the protocol agreed >95% with WHO reported data and phenotypic drug susceptibility testing (pDST). Lineage genetics results were 100% concordant with those derived from WGS. After that, the TS protocol was applied to sputum samples from TB patients to detect resistance to first- and second-line drugs and derive phylogeny. The accuracy was >90% for all evaluated drugs, except Eto/Pto (77.8%), and 100% were phylogenetically classified. The results indicate that the described protocol, which affords the complete drug resistance profile and phylogeny of Mtb from sputum, could be useful in the clinical area, advancing toward more personalized and more effective treatments in the near future. IMPORTANCE The COVID-19 pandemic negatively affected the progress in accessing essential Tuberculosis (TB) services and reducing the burden of TB disease, resulting in a decreased detection of new cases and increased deaths. Generating molecular diagnostic tests with faster results without losing reliability is considered a priority. Specifically, developing an antimicrobial resistance profile from the initial stages of TB diagnosis is essential to ensure appropriate treatment. Currently available rapid molecular tests evaluate only the most common genetic variants responsible for resistance to certain drugs, limiting their clinical value. In this work, targeted sequencing on sputum samples from TB patients was used to identify Mycobacterium tuberculosis mutations in genes associated with drug resistance and to derive a phylogeny of the infecting strain. This protocol constitutes a proof-of-concept toward the goal of helping clinicians select a timely and appropriate treatment by providing them with actionable information beyond current molecular approaches.


Assuntos
COVID-19 , Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Tuberculose , Humanos , Escarro , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Filogenia , Testes de Sensibilidade Microbiana , Reprodutibilidade dos Testes , Marcadores Genéticos , Pandemias , Tuberculose/microbiologia , Resistência a Medicamentos , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico
2.
PLoS One ; 16(10): e0258774, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34699523

RESUMO

Next-Generation Sequencing (NGS) is widely used to investigate genomic variation. In several studies, the genetic variation of Mycobacterium tuberculosis has been analyzed in sputum samples without previous culture, using target enrichment methodologies for NGS. Alignments obtained by different programs generally map the sequences under default parameters, and from these results, it is assumed that only Mycobacterium reads will be obtained. However, variants of interest microorganism in clinical samples can be confused with a vast collection of reads from other bacteria, viruses, and human DNA. Currently, there are no standardized pipelines, and the cleaning success is never verified since there is a lack of rigorous controls to identify and remove reads from other sputum-microorganisms genetically similar to M. tuberculosis. Therefore, we designed a bioinformatic pipeline to process NGS data from sputum samples, including several filters and quality control points to identify and eliminate non-M. tuberculosis reads to obtain a reliable genetic variant report. Our proposal uses the SURPI software as a taxonomic classifier to filter input sequences and perform a mapping that provides the highest percentage of Mycobacterium reads, minimizing the reads from other microorganisms. We then use the filtered sequences to perform variant calling with the GATK software, ensuring the mapping quality, realignment, recalibration, hard-filtering, and post-filter to increase the reliability of the reported variants. Using default mapping parameters, we identified reads of contaminant bacteria, such as Streptococcus, Rhotia, Actinomyces, and Veillonella. Our final mapping strategy allowed a sequence identity of 97.8% between the input reads and the whole M. tuberculosis reference genome H37Rv using a genomic edit distance of three, thus removing 98.8% of the off-target sequences with a Mycobacterium reads loss of 1.7%. Finally, more than 200 unreliable genetic variants were removed during the variant calling, increasing the report's reliability.


Assuntos
Biologia Computacional/métodos , DNA Bacteriano/genética , Mycobacterium tuberculosis/genética , Tuberculose/microbiologia , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Mycobacterium tuberculosis/classificação , Mycobacterium tuberculosis/isolamento & purificação , Análise de Sequência de DNA , Software , Escarro/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA