Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 913: 169597, 2024 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-38151132

RESUMO

Dredging of lake sediment is a method to remove accumulated phosphorus and nitrogen in lakes and thereby reducing the risk of eutrophication. After dredging, the sediment is dewatered to reduce the volume. It is important to get a high dry matter content and ensure that the filtrate does not contain harmful compounds so it can be returned to the lake. A pilot-scale belt filter and flexible intermediate bulk containers (FIBC) were used for dewatering lake sediment with the sediment treated with a synthetic polymer or three different biopolymers. The goal of the study was to retain the phosphorus in the filter cake while returning the filtrate to the lake with a minimal phosphorus content. Results showed dry matter content of up to 16 % in the dewatered sediment and the sediment retained 96-99 % of the phosphorus. Furthermore, nitrogen was reduced by 27-71 % in the filtrate water. Toxicity tests found low ecotoxicity for most biopolymer filtrates, whereas synthetic polymer showed the highest potential ecotoxicity. Consequently, biopolymers provided satisfactory results, proving more environmentally friendly despite requiring longer filtration time.


Assuntos
Poluentes Químicos da Água , Qualidade da Água , Lagos , Monitoramento Ambiental , Projetos Piloto , Fósforo/análise , Poluentes Químicos da Água/análise , Sedimentos Geológicos , Biopolímeros , Polímeros , Nitrogênio/análise , Eutrofização
2.
Water Res ; 244: 120391, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37544119

RESUMO

The eutrophic Bouvigne pond (Breda, The Netherlands) regularly suffers from cyanobacterial blooms. To improve the water quality, the external nutrient loading and the nutrient release from the pond sediment have to be reduced. An enclosure experiment was performed in the pond between March 9 and July 29, 2020 to compare the efficiency of dredging, addition of the lanthanum-modified bentonite clay Phoslock® (LMB), the aluminum-modified zeolite Aqual-P™ (AMZ) and FeCl2 to mitigate nutrient release from the sediment. The treatments improved water quality. Mean total phosphorus (TP) concentrations in water were 0.091, 0.058, 0.032, 0.031, and 0.030 mg P L-1 in controls, dredged, FeCl2, LMB and AMZ treated enclosures, respectively. Mean filterable P (FP) concentrations were 0.056, 0.010, 0.009, 0.005, and 0.005 mg P L-1 in controls, dredged, FeCl2, LMB and AMZ treatments, respectively. Total nitrogen (TN) and dissolved inorganic nitrogen (DIN) were similar among treatments; lanthanum was elevated in LMB treatments, Fe and Cl in FeCl2 treatments, and Al and Cl in AMZ treatments. After 112 days, sediment was collected from each enclosure, and subsequent sequential P extraction revealed that the mobile P pool in the sediments had reduced by 71.4%, 60.2%, 38%, and 5.2% in dredged, AMZ, LMB, and FeCl2 treatments compared to the controls. A sediment core incubation laboratory experiment done simultaneously with the enclosure experiment revealed that FP fluxes were positive in controls and cores from the dredged area, while negative in LMB, AMZ and FeCl2 treated cores. Dissolved inorganic nitrogen (DIN) release rate in LMB treated cores was 3.6 times higher than in controls. Overall, the applied in-lake treatments improved water quality in the enclosures. Based on this study, from effectiveness, application, stakeholders engagement, costs and environmental safety, LMB treatment would be the preferred option to reduce the internal nutrient loading of the Bouvigne pond, but additional arguments also have to be considered when preparing a restoration.


Assuntos
Poluentes Químicos da Água , Zeolitas , Bentonita , Alumínio , Lantânio , Fósforo , Lagos , Nutrientes , Sedimentos Geológicos , Eutrofização , Poluentes Químicos da Água/análise
3.
J Environ Manage ; 331: 117199, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36638721

RESUMO

In the frame of the global phosphorus (P) crisis and ongoing eutrophication issues in the environmental sector, lake sediment can be considered as an alternative P source after its removal from eutrophic lakes. However, high water contents make sediment dewatering a crucial step towards the efficient reusability of remaining solids. The application of polymeric substances facilitates solid-liquid separation by flocculation of suspended particles. To lower the environmental risk of contamination with toxic, non-biodegradable monomeric residues during and after the application of synthetic polyacrylamide(PAM)-based polymers, switching to natural polymeric substances (biopolymers), e.g., starch- or chitosan-based, is increasingly emphasized. The dewatering performance of four conventional PAM-based polymers was compared to two starch- and one chitosan-based biopolymer. Laboratory experiments were conducted to determine the dewatering rate, floc size and strength, and reject water quality. Biopolymers generally caused the formation of smaller but less shear-sensitive flocs, and lower P levels in the reject water compared to synthetic polymers. Dewatering performance was correlated to the most important functioning influencing polymer-specific properties intrinsic viscosity (polymer extension) and surface charge density (CD). Due to the high CD and low intrinsic viscosity of the biopolymers, electrostatic patch flocculation seems to be the favored flocculation mechanism, while for synthetic polymers bridging seems to be dominating. Solid-liquid separation technologies should be adjusted to the resulting floc size and structure, while surface CD and intrinsic viscosity are important properties for the choice of biopolymer. Overall, biopolymers can function as a more environmentally friendly alternative to synthetic products for lake sediment dewatering accompanied by the potential for P recovery.


Assuntos
Quitosana , Lagos , Floculação , Biopolímeros/química , Polímeros , Amido , Esgotos/química , Eliminação de Resíduos Líquidos/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA