Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
G3 (Bethesda) ; 9(3): 729-736, 2019 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-30626591

RESUMO

Eosinophilic esophagitis (EoE) is a chronic, food-driven allergic disease resulting in eosinophilic esophageal inflammation. We recently found that EoE susceptibility is associated with genetic variants in the promoter of CAPN14, a gene with reported esophagus-specific expression. CAPN14 is dynamically up-regulated as a function of EoE disease activity and after exposure of epithelial cells to interleukin-13 (IL-13). Herein, we aimed to explore molecular modulation of CAPN14 expression. We identified three putative binding sites for the IL-13-activated transcription factor STAT6 in the promoter and first intron of CAPN14 Luciferase reporter assays revealed that the two most distal STAT6 elements were required for the ∼10-fold increase in promoter activity subsequent to stimulation with IL-13 or IL-4, and also for the genotype-dependent reduction in IL-13-induced promoter activity. One of the STAT6 elements in the promoter was necessary for IL-13-mediated induction of CAPN14 promoter activity while the other STAT6 promoter element was necessary for full induction. Chromatin immunoprecipitation in IL-13 stimulated esophageal epithelial cells was used to further support STAT6 binding to the promoter of CAPN14 at these STAT6 binding sites. The highest CAPN14 and calpain-14 expression occurred with IL-13 or IL-4 stimulation of esophageal epithelial cells under culture conditions that allow the cells to differentiate into a stratified epithelium. This work corroborates a candidate molecular mechanism for EoE disease etiology in which the risk variant at 2p23 dampens CAPN14 expression in differentiated esophageal epithelial cells following IL-13/STAT6 induction of CAPN14 promoter activity.


Assuntos
Calpaína/genética , Esofagite Eosinofílica/genética , Células Epiteliais/enzimologia , Regulação da Expressão Gênica , Interleucina-13/metabolismo , Polimorfismo de Nucleotídeo Único , Fator de Transcrição STAT6/metabolismo , Linhagem Celular , Esofagite Eosinofílica/metabolismo , Predisposição Genética para Doença , Humanos , Inflamação , Interleucina-4/metabolismo , Regiões Promotoras Genéticas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA