Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Med Internet Res ; 25: e42289, 2023 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-36972116

RESUMO

BACKGROUND: Data provenance refers to the origin, processing, and movement of data. Reliable and precise knowledge about data provenance has great potential to improve reproducibility as well as quality in biomedical research and, therefore, to foster good scientific practice. However, despite the increasing interest on data provenance technologies in the literature and their implementation in other disciplines, these technologies have not yet been widely adopted in biomedical research. OBJECTIVE: The aim of this scoping review was to provide a structured overview of the body of knowledge on provenance methods in biomedical research by systematizing articles covering data provenance technologies developed for or used in this application area; describing and comparing the functionalities as well as the design of the provenance technologies used; and identifying gaps in the literature, which could provide opportunities for future research on technologies that could receive more widespread adoption. METHODS: Following a methodological framework for scoping studies and the PRISMA-ScR (Preferred Reporting Items for Systematic Reviews and Meta-Analyses Extension for Scoping Reviews) guidelines, articles were identified by searching the PubMed, IEEE Xplore, and Web of Science databases and subsequently screened for eligibility. We included original articles covering software-based provenance management for scientific research published between 2010 and 2021. A set of data items was defined along the following five axes: publication metadata, application scope, provenance aspects covered, data representation, and functionalities. The data items were extracted from the articles, stored in a charting spreadsheet, and summarized in tables and figures. RESULTS: We identified 44 original articles published between 2010 and 2021. We found that the solutions described were heterogeneous along all axes. We also identified relationships among motivations for the use of provenance information, feature sets (capture, storage, retrieval, visualization, and analysis), and implementation details such as the data models and technologies used. The important gap that we identified is that only a few publications address the analysis of provenance data or use established provenance standards, such as PROV. CONCLUSIONS: The heterogeneity of provenance methods, models, and implementations found in the literature points to the lack of a unified understanding of provenance concepts for biomedical data. Providing a common framework, a biomedical reference, and benchmarking data sets could foster the development of more comprehensive provenance solutions.


Assuntos
Pesquisa Biomédica , Humanos , Metadados , PubMed , Reprodutibilidade dos Testes , Software
2.
Brief Bioinform ; 23(6)2022 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-36215114

RESUMO

Precision medicine relies on molecular and systems biology methods as well as bidirectional association studies of phenotypes and (high-throughput) genomic data. However, the integrated use of such data often faces obstacles, especially in regards to data protection. An important prerequisite for research data processing is usually informed consent. But collecting consent is not always feasible, in particular when data are to be analyzed retrospectively. For phenotype data, anonymization, i.e. the altering of data in such a way that individuals cannot be identified, can provide an alternative. Several re-identification attacks have shown that this is a complex task and that simply removing directly identifying attributes such as names is usually not enough. More formal approaches are needed that use mathematical models to quantify risks and guide their reduction. Due to the complexity of these techniques, it is challenging and not advisable to implement them from scratch. Open software libraries and tools can provide a robust alternative. However, also the range of available anonymization tools is heterogeneous and obtaining an overview of their strengths and weaknesses is difficult due to the complexity of the problem space. We therefore performed a systematic review of open anonymization tools for structured phenotype data described in the literature between 1990 and 2021. Through a two-step eligibility assessment process, we selected 13 tools for an in-depth analysis. By comparing the supported anonymization techniques and further aspects, such as maturity, we derive recommendations for tools to use for anonymizing phenotype datasets with different properties.


Assuntos
Pesquisa Biomédica , Privacidade , Estudos Retrospectivos , Anonimização de Dados , Fenótipo
3.
Appl Plant Sci ; 8(12): e11404, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33344095

RESUMO

PREMISE: Leaf morphology is dynamic, continuously deforming during leaf expansion and among leaves within a shoot. Here, we measured the leaf morphology of more than 200 grapevines (Vitis spp.) over four years and modeled changes in leaf shape along the shoot to determine whether a composite leaf shape comprising all the leaves from a single shoot can better capture the variation and predict species identity compared with individual leaves. METHODS: Using homologous universal landmarks found in grapevine leaves, we modeled various morphological features as polynomial functions of leaf nodes. The resulting functions were used to reconstruct modeled leaf shapes across the shoots, generating composite leaves that comprehensively capture the spectrum of leaf morphologies present. RESULTS: We found that composite leaves are better predictors of species identity than individual leaves from the same plant. We were able to use composite leaves to predict the species identity of previously unassigned grapevines, which were verified with genotyping. DISCUSSION: Observations of individual leaf shape fail to capture the true diversity between species. Composite leaf shape-an assemblage of modeled leaf snapshots across the shoot-is a better representation of the dynamic and essential shapes of leaves, in addition to serving as a better predictor of species identity than individual leaves.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA