Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Geophys Res Biogeosci ; 127(1): e2021JG006587, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35865142

RESUMO

Forests dominate the global terrestrial carbon budget, but their ability to continue doing so in the face of a changing climate is uncertain. A key uncertainty is how forests will respond to (resistance) and recover from (resilience) rising levels of disturbance of varying intensities. This knowledge gap can optimally be addressed by integrating manipulative field experiments with ecophysiological modeling. We used the Ecosystem Demography-2.2 (ED-2.2) model to project carbon fluxes for a northern temperate deciduous forest subjected to a real-world disturbance severity manipulation experiment. ED-2.2 was run for 150 years, starting from near bare ground in 1900 (approximating the clear-cut conditions at the time), and subjected to three disturbance treatments under an ensemble of climate conditions. Both disturbance severity and climate strongly affected carbon fluxes such as gross primary production (GPP), and interacted with one another. We then calculated resistance and resilience, two dimensions of ecosystem stability. Modeled GPP exhibited a two-fold decrease in mean resistance across disturbance severities of 45%, 65%, and 85% mortality; conversely, resilience increased by a factor of two with increasing disturbance severity. This pattern held for net primary production and net ecosystem production, indicating a trade-off in which greater initial declines were followed by faster recovery. Notably, however, heterotrophic respiration responded more slowly to disturbance, and it's highly variable response was affected by different drivers. This work provides insight into how future conditions might affect the functional stability of mature forests in this region under ongoing climate change and changing disturbance regimes.

2.
PLoS Comput Biol ; 17(10): e1009440, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34710084

RESUMO

The opportunity to participate in and contribute to emerging fields is increasingly prevalent in science. However, simply thinking about stepping outside of your academic silo can leave many students reeling from the uncertainty. Here, we describe 10 simple rules to successfully train yourself in an emerging field, based on our experience as students in the emerging field of ecological forecasting. Our advice begins with setting and revisiting specific goals to achieve your academic and career objectives and includes several useful rules for engaging with and contributing to an emerging field.


Assuntos
Escolha da Profissão , Objetivos , Estudantes , Previsões , Humanos , Ocupações , Publicações/estatística & dados numéricos
3.
Ecol Appl ; 31(7): e02417, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34278647

RESUMO

Many secondary deciduous forests of eastern North America are approaching a transition in which mature early-successional trees are declining, resulting in an uncertain future for this century-long carbon (C) sink. We initiated the Forest Accelerated Succession Experiment (FASET) at the University of Michigan Biological Station to examine the patterns and mechanisms underlying forest C cycling following the stem girdling-induced mortality of >6,700 early-successional Populus spp. (aspen) and Betula papyrifera (paper birch). Meteorological flux tower-based C cycling observations from the 33-ha treatment forest have been paired with those from a nearby unmanipulated forest since 2008. Following over a decade of observations, we revisit our core hypothesis: that net ecosystem production (NEP) would increase following the transition to mid-late-successional species dominance due to increased canopy structural complexity. Supporting our hypothesis, NEP was stable, briefly declined, and then increased relative to the control in the decade following disturbance; however, increasing NEP was not associated with rising structural complexity but rather with a rapid 1-yr recovery of total leaf area index as mid-late-successional Acer, Quercus, and Pinus assumed canopy dominance. The transition to mid-late-successional species dominance improved carbon-use efficiency (CUE = NEP/gross primary production) as ecosystem respiration declined. Similar soil respiration rates in control and treatment forests, along with species differences in leaf physiology and the rising relative growth rates of mid-late-successional species in the treatment forest, suggest changes in aboveground plant respiration and growth were primarily responsible for increases in NEP. We conclude that deciduous forests transitioning from early to middle succession are capable of sustained or increased NEP, even when experiencing extensive tree mortality. This adds to mounting evidence that aging deciduous forests in the region will function as C sinks for decades to come.


Assuntos
Ecossistema , Pinus , Carbono , Florestas , Árvores
4.
Ecol Evol ; 10(10): 4419-4430, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32489607

RESUMO

Differential disturbance severity effects on forest vegetation structure, species diversity, and net primary production (NPP) have been long theorized and observed. Here, we examined these factors concurrently to explore the potential for a mechanistic pathway linking disturbance severity, changes in light environment, leaf functional response, and wood NPP in a temperate hardwood forest.Using a suite of measurements spanning an experimental gradient of tree mortality, we evaluated the direction and magnitude of change in vegetation structural and diversity indexes in relation to wood NPP. Informed by prior observations, we hypothesized that forest structural and species diversity changes and wood NPP would exhibit either a linear, unimodal, or threshold response in relation to disturbance severity. We expected increasing disturbance severity would progressively shift subcanopy light availability and leaf traits, thereby coupling structural and species diversity changes with primary production.Linear or unimodal changes in three of four vegetation structural indexes were observed across the gradient in disturbance severity. However, disturbance-related changes in vegetation structure were not consistently correlated with shifts in light environment, leaf traits, and wood NPP. Species diversity indexes did not change in response to rising disturbance severity.We conclude that, in our study system, the sensitivity of wood NPP to rising disturbance severity is generally tied to changing vegetation structure but not species diversity. Changes in vegetation structure are inconsistently coupled with light environment and leaf traits, resulting in mixed support for our hypothesized cascade linking disturbance severity to wood NPP.

5.
Ecol Lett ; 22(12): 2049-2059, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31523909

RESUMO

Vegetation canopy structure is a fundamental characteristic of terrestrial ecosystems that defines vegetation types and drives ecosystem functioning. We use the multivariate structural trait composition of vegetation canopies to classify ecosystems within a global canopy structure spectrum. Across the temperate forest sub-set of this spectrum, we assess gradients in canopy structural traits, characterise canopy structural types (CST) and evaluate drivers and functional consequences of canopy structural variation. We derive CSTs from multivariate canopy structure data, illustrating variation along three primary structural axes and resolution into six largely distinct and functionally relevant CSTs. Our results illustrate that within-ecosystem successional processes and disturbance legacies can produce variation in canopy structure similar to that associated with sub-continental variation in forest types and eco-climatic zones. The potential to classify ecosystems into CSTs based on suites of structural traits represents an important advance in understanding and modelling structure-function relationships in vegetated ecosystems.


Assuntos
Ecossistema , Árvores , Florestas , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA