Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biomed Pharmacother ; 173: 116427, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38484558

RESUMO

Uncertainty exists regarding the mechanisms by which hypoxia-inducible factors (HIFs) control CD8+T-cell migration into tumor microenvironments. Here, we found that HIF-1α knockdown or overexpression resulted in increased or decreased CXCL9, -10, and -11 expression in vitro, respectively. Gene Set Variation Analysis revealed that elevated HIF-1α levels correlated with a poor prognosis, severe pathological stage, and an absence of CD8+ T cells in the tumor microenvironment in colorectal cancer (CRC) patients. HIF-1α was inversely associated with pathways beneficial to anti-tumor immunotherapy and cytokine/chemokine function. In vivo, inhibiting HIF-1α or its upstream regulator BIRC2 significantly suppressed tumor growth and promoted CD8+ T-cell infiltration. CXCR3 neutralizing antibodies reversed these effects, implicating the involvement of CXCL9, -10, and -11/CXCR3 axis. The presence of HIF-1α weakened the upregulation of CXCL9, -10, and -11 by bleomycin and doxorubicin. Combining HIF-1α inhibition with bleomycin promoted CD8+ T-cell infiltration and tumor suppression in vivo. Moreover, doxorubicin could upregulate CXCL9, -10 and -11 by suppressing HIF-1α. Our findings highlight the potential of HIF-1α inhibition to improve CRC microenvironments and increase chemotherapy sensitivity.


Assuntos
Neoplasias Colorretais , Resistencia a Medicamentos Antineoplásicos , Subunidade alfa do Fator 1 Induzível por Hipóxia , Humanos , Bleomicina , Linfócitos T CD8-Positivos , Linhagem Celular Tumoral , Quimiocina CXCL9/genética , Quimiocina CXCL9/metabolismo , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/metabolismo , Citocinas , Doxorrubicina/farmacologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Microambiente Tumoral
2.
Viruses ; 16(2)2024 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-38400021

RESUMO

Seasonal infection rates of individual viruses are influenced by synergistic or inhibitory interactions between coincident viruses. Endemic patterns of SARS-CoV-2 and influenza infection overlap seasonally in the Northern hemisphere and may be similarly influenced. We explored the immunopathologic basis of SARS-CoV-2 and influenza A (H1N1pdm09) interactions in Syrian hamsters. H1N1 given 48 h prior to SARS-CoV-2 profoundly mitigated weight loss and lung pathology compared to SARS-CoV-2 infection alone. This was accompanied by the normalization of granulocyte dynamics and accelerated antigen-presenting populations in bronchoalveolar lavage and blood. Using nasal transcriptomics, we identified a rapid upregulation of innate and antiviral pathways induced by H1N1 by the time of SARS-CoV-2 inoculation in 48 h dual-infected animals. The animals that were infected with both viruses also showed a notable and temporary downregulation of mitochondrial and viral replication pathways. Quantitative RT-PCR confirmed a decrease in the SARS-CoV-2 viral load and lower cytokine levels in the lungs of animals infected with both viruses throughout the course of the disease. Our data confirm that H1N1 infection induces rapid and transient gene expression that is associated with the mitigation of SARS-CoV-2 pulmonary disease. These protective responses are likely to begin in the upper respiratory tract shortly after infection. On a population level, interaction between these two viruses may influence their relative seasonal infection rates.


Assuntos
COVID-19 , Vírus da Influenza A Subtipo H1N1 , Influenza Humana , Cricetinae , Animais , Humanos , COVID-19/patologia , Mesocricetus , SARS-CoV-2 , Influenza Humana/patologia , Pulmão , Modelos Animais de Doenças
3.
Cell Mol Life Sci ; 81(1): 29, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38212474

RESUMO

Involution of the mammary gland after lactation is a dramatic example of coordinated cell death. Weaning causes distension of the alveolar structures due to the accumulation of milk, which, in turn, activates STAT3 and initiates a caspase-independent but lysosome-dependent cell death (LDCD) pathway. Although the importance of STAT3 and LDCD in early mammary involution is well established, it has not been entirely clear how milk stasis activates STAT3. In this report, we demonstrate that protein levels of the PMCA2 calcium pump are significantly downregulated within 2-4 h of experimental milk stasis. Reductions in PMCA2 expression correlate with an increase in cytoplasmic calcium in vivo as measured by multiphoton intravital imaging of GCaMP6f fluorescence. These events occur concomitant with the appearance of nuclear pSTAT3 expression but prior to significant activation of LDCD or its previously implicated mediators such as LIF, IL6, and TGFß3, all of which appear to be upregulated by increased intracellular calcium. We further demonstrate that increased intracellular calcium activates STAT3 by inducing degradation of its negative regulator, SOCS3. We also observed that milk stasis, loss of PMCA2 expression and increased intracellular calcium levels activate TFEB, an important regulator of lysosome biogenesis through a process involving inhibition of CDK4/6 and cell cycle progression. In summary, these data suggest that intracellular calcium serves as an important proximal biochemical signal linking milk stasis to STAT3 activation, increased lysosomal biogenesis, and lysosome-mediated cell death.


Assuntos
Cálcio , Leite , Feminino , Animais , Leite/metabolismo , Cálcio/metabolismo , Morte Celular , Lactação , Lisossomos/metabolismo , Glândulas Mamárias Animais/metabolismo , Fator de Transcrição STAT3/metabolismo
4.
Res Sq ; 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37398309

RESUMO

Involution of the mammary gland after lactation is a dramatic example of coordinated cell death. Weaning causes distension of the alveolar structures due to the accumulation of milk, which, in turn, activates STAT3 and initiates a caspase-independent but lysosome-dependent cell death (LDCD) pathway. Although the importance of STAT3 and LDCD in early mammary involution is well established, it has not been entirely clear how milk stasis activates STAT3. In this report, we demonstrate that protein levels of the PMCA2 calcium pump are significantly downregulated within 2-4 hours of experimental milk stasis. Reductions in PMCA2 expression correlate with an increase in cytoplasmic calcium in vivo as measured by multiphoton intravital imaging of GCaMP6f fluorescence. These events occur concomitant with the appearance of nuclear pSTAT3 expression but prior to significant activation of LDCD or its previously implicated mediators such as LIF, IL6 and TGFß3, all of which appear to be upregulated by increased intracellular calcium. We also observed that milk stasis, loss of PMCA2 expression and increased intracellular calcium levels activate TFEB, an important regulator of lysosome biogenesis. This is the result of increased TGFß signaling and inhibition of cell cycle progression. Finally, we demonstrate that increased intracellular calcium activates STAT3 by inducing degradation of its negative regulator, SOCS3, a process which also appears to be mediated by TGFß signaling. In summary, these data suggest that intracellular calcium serves as an important proximal biochemical signal linking milk stasis to STAT3 activation, increased lysosomal biogenesis, and lysosome-mediated cell death.

5.
Blood Adv ; 3(14): 2082-2092, 2019 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-31296496

RESUMO

Graft-versus-host disease (GVHD) is a major cause of morbidity and mortality in allogeneic hematopoietic stem cell transplantation (alloSCT). By static microscopy, cutaneous GVHD lesions contain a mix of T cells and myeloid cells. We used 2-photon intravital microscopy to investigate the dynamics of CD4+ and CD8+ T cells and donor dendritic cells (DCs) in cutaneous GVHD lesions in an MHC-matched, multiple minor histocompatibility antigen-mismatched (miHA) model. The majority of CD4 and CD8 cells were stationary, and few cells entered and stopped or were stopped and left the imaged volumes. CD8 cells made TCR:MHCI-dependent interactions with CD11c+ cells, as measured by the durations that CD8 cells contacted MHCI+ vs MHCI- DCs. The acute deletion of Langerin+CD103+ DCs, which were relatively rare, did not affect CD8 cell motility and DC contact times, indicating that Langerin-CD103- DCs provide stop signals to CD8 cells. CD4 cells, in contrast, had similar contact durations with MHCII+ and MHCII- DCs. However, CD4 motility rapidly increased after the infusion of an MHCII-blocking antibody, indicating that TCR signaling actively suppressed CD4 movements. Many CD4 cells still were stationary after anti-MHCII antibody infusion, suggesting CD4 cell heterogeneity within the lesion. These data support a model of local GVHD maintenance within target tissues.


Assuntos
Células Dendríticas/imunologia , Doença Enxerto-Hospedeiro/etiologia , Doença Enxerto-Hospedeiro/metabolismo , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Dermatopatias/etiologia , Dermatopatias/metabolismo , Linfócitos T/imunologia , Animais , Biomarcadores , Antígeno CD11c/metabolismo , Comunicação Celular , Células Dendríticas/metabolismo , Modelos Animais de Doenças , Imunofluorescência , Expressão Gênica , Genes Reporter , Antígenos de Histocompatibilidade Classe I/imunologia , Antígenos de Histocompatibilidade Classe I/metabolismo , Imunofenotipagem , Depleção Linfocítica , Camundongos , Camundongos Transgênicos , Ligação Proteica , Receptores de Antígenos de Linfócitos T/metabolismo , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Linfócitos T/metabolismo , Transplante Homólogo
6.
Immunol Rev ; 288(1): 10-27, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30874342

RESUMO

Throughout the developing GC response, B cell survival and fate choices made at the single cell level are dependent on signals received largely through interactions with other cells, often with cognate T cells. The type of signals that a given B cell can encounter is dictated by its location within tissue microarchitecture. The focus of this review is on the initiation and evolution of the GC response at the earliest time points. Here, we review the key factors influencing the progression of GC B cell differentiation that are both stage and context dependent. Finally, we describe the coevolution of niches within and surrounding the GC that influence the outcome of the GC response.


Assuntos
Linfócitos B/imunologia , Centro Germinativo/imunologia , Células Estromais/fisiologia , Linfócitos T/imunologia , Animais , Diferenciação Celular , Humanos , Ativação Linfocitária , Comunicação Parácrina , Transdução de Sinais
7.
Psychother Res ; 29(7): 908-918, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-29366385

RESUMO

Objective: This study examined purported change mechanisms in emotion-focused therapy for social anxiety disorder. Methods: The sample included nine clients who had participated in a multiple-baseline case study trial examining the efficacy of emotion-focused therapy for social anxiety disorder (SAD). Multilevel analyses were conducted to examine the trajectories of emotions over the course of treatment, and whether primary adaptive emotions in a given session predicted levels of SAD symptoms, self-criticism, and self-reassurance over the course of the following week. Results: Findings showed a significant decrease in shame, and a marginally significant increase in assertive anger, over the course of treatment. Adaptive sadness/grief in a given session predicted less fear of negative evaluation over the course of the following week. Shame in a given session predicted higher levels of inadequate-self over the course of the following week. Finally, shame, and to a lesser degree assertive anger, in a given session predicted reassurance of self over the course of the following week. Neither assertive anger nor adaptive sadness/grief in a given session predicted levels of self-criticism over the course of the following week. Conclusions: These findings lend partial preliminary support for the therapeutic role of evoking and processing adaptive sadness/grief and assertive anger in the treatment of SAD.


Assuntos
Terapia Focada em Emoções , Emoções , Fobia Social/terapia , Avaliação de Processos em Cuidados de Saúde , Processos Psicoterapêuticos , Autoimagem , Adulto , Feminino , Humanos
8.
Nat Immunol ; 20(1): 86-96, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30538335

RESUMO

Germinal center (GC) B cells feature repression of many gene enhancers to establish their characteristic transcriptome. Here we show that conditional deletion of Lsd1 in GCs significantly impaired GC formation, associated with failure to repress immune synapse genes linked to GC exit, which are also direct targets of the transcriptional repressor BCL6. We found that BCL6 directly binds LSD1 and recruits it primarily to intergenic and intronic enhancers. Conditional deletion of Lsd1 suppressed GC hyperplasia caused by constitutive expression of BCL6 and significantly delayed BCL6-driven lymphomagenesis. Administration of catalytic inhibitors of LSD1 had little effect on GC formation or GC-derived lymphoma cells. Using a CRISPR-Cas9 domain screen, we found instead that the LSD1 Tower domain was critical for dependence on LSD1 in GC-derived B cells. These results indicate an essential role for LSD1 in the humoral immune response, where it modulates enhancer function by forming repression complexes with BCL6.


Assuntos
Linfócitos B/fisiologia , Centro Germinativo/patologia , Histona Desmetilases/metabolismo , Linfoma/metabolismo , Proteínas Proto-Oncogênicas c-bcl-6/metabolismo , Animais , Sistemas CRISPR-Cas , Carcinogênese , DNA Intergênico/genética , Centro Germinativo/imunologia , Histona Desmetilases/genética , Hiperplasia , Sinapses Imunológicas/genética , Íntrons/genética , Linfoma/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Proto-Oncogênicas c-bcl-6/genética
9.
J Immunol ; 201(12): 3569-3579, 2018 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-30446568

RESUMO

We examined the unique contributions of the cytokines IL-21 and IL-4 on germinal center (GC) B cell initiation and subsequent maturation in a murine model system. Similar to other reports, we found T follicular helper cell expression of IL-21 begins prior to T follicular helper cell migration into the B cell follicle and precedes that of IL-4. Consistent with this timing, IL-21 signaling has a greater influence on the perifollicular pre-GC B cell transition to the intrafollicular stage. Notably, Bcl6hi B cells can form in the combined absence of IL-21R- and STAT6-derived signals; however, these nascent GC B cells cease to proliferate and are more prone to apoptosis. When B cells lack either IL-21R or STAT6, aberrant GCs form atypical centroblasts and centrocytes that differ in their phenotypic maturation and costimulatory molecule expression. Thus, IL-4 and IL-21 play nonredundant roles in the phased progression of GC B cell development that can initiate in the combined absence of these cytokine signals.


Assuntos
Linfócitos B/imunologia , Centro Germinativo/imunologia , Interleucina-4/metabolismo , Interleucinas/metabolismo , Linfócitos T Auxiliares-Indutores/imunologia , Animais , Apoptose , Diferenciação Celular , Autorrenovação Celular , Células Cultivadas , Ativação Linfocitária , Camundongos , Camundongos Knockout , Comunicação Parácrina , Proteínas Proto-Oncogênicas c-bcl-6/metabolismo , Receptores de Interleucina-21/genética , Fator de Transcrição STAT6/metabolismo , Transdução de Sinais
10.
Elife ; 62017 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-28498098

RESUMO

To reconcile conflicting reports on the role of CD40 signaling in germinal center (GC) formation, we examined the earliest stages of murine GC B cell differentiation. Peri-follicular GC precursors first expressed intermediate levels of BCL6 while co-expressing the transcription factors RelB and IRF4, the latter known to repress Bcl6 transcription. Transition of GC precursors to the BCL6hi follicular state was associated with cell division, although the number of required cell divisions was immunogen dose dependent. Potentiating T cell help or CD40 signaling in these GC precursors actively repressed GC B cell maturation and diverted their fate towards plasmablast differentiation, whereas depletion of CD4+ T cells promoted this initial transition. Thus while CD40 signaling in B cells is necessary to generate the immediate precursors of GC B cells, transition to the BCL6hi follicular state is promoted by a regional and transient diminution of T cell help.


Assuntos
Linfócitos B/fisiologia , Diferenciação Celular , Centro Germinativo/citologia , Linfócitos T/fisiologia , Animais , Linfócitos B/imunologia , Antígenos CD40/metabolismo , Camundongos , Linfócitos T/imunologia
12.
Nat Cell Biol ; 19(2): 155-163, 2017 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-28248302

RESUMO

Tissue repair is fundamental to our survival as tissues are challenged by recurrent damage. During mammalian skin repair, cells respond by migrating and proliferating to close the wound. However, the coordination of cellular repair behaviours and their effects on homeostatic functions in a live mammal remains unclear. Here we capture the spatiotemporal dynamics of individual epithelial behaviours by imaging wound re-epithelialization in live mice. Differentiated cells migrate while the rate of differentiation changes depending on local rate of migration and tissue architecture. Cells depart from a highly proliferative zone by directionally dividing towards the wound while collectively migrating. This regional coexistence of proliferation and migration leads to local expansion and elongation of the repairing epithelium. Finally, proliferation functions to pattern and restrict the recruitment of undamaged cells. This study elucidates the interplay of cellular repair behaviours and consequent changes in homeostatic behaviours that support tissue-scale organization of wound re-epithelialization.

13.
J Invest Dermatol ; 137(2): 282-287, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27847119

RESUMO

Conventional, static analyses have historically been the bedrock and tool of choice for the study of skin cancers. Over the past several years, in vivo imaging of tumors using multiphoton microscopy has emerged as a powerful preclinical tool for revealing detailed cellular behaviors from the earliest moments of tumor development to the final steps of metastasis. Multiphoton microscopy allows for deep tissue penetration with relatively minor phototoxicity, rendering it an effective tool for the long-term observation of tumor evolution. This review highlights some of the recent preclinical insights gained using multiphoton microscopy and suggests future advances that could enhance its power in revealing the mysteries of skin tumor biology.


Assuntos
Microscopia de Fluorescência por Excitação Multifotônica/métodos , Neoplasias Cutâneas/diagnóstico por imagem , Proliferação de Células , Humanos , Invasividade Neoplásica , Metástase Neoplásica , Neoplasias Cutâneas/patologia
14.
Cell Rep ; 16(9): 2472-85, 2016 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-27545885

RESUMO

Evidence suggests that distinct splenic dendritic cell (DC) subsets activate either CD4+ or CD8+ T cells in vivo. This bias has been partially ascribed to differential antigen presentation; however, all DC subsets can activate both T cell lineages in vitro. Therefore, we tested whether the organization of DC and T cell subsets in the spleen dictated this preference. We discovered that CD4+ and CD8+ T cells segregated within splenic T cell zones prior to immunization. After intravenous immunization, the two major conventional DC populations, distinguished by 33D1 and XCR1 staining, migrated into separate regions of the T cell zone: 33D1+ DCs migrated into the CD4+ T cell area, whereas XCR1+ DCs migrated into the CD8+ T cell area. Thus, the post-immunization location of each DC subset correlated with the T cell lineage it preferentially primes. Preventing this co-localization selectively impaired either CD4+ or CD8+ T cell immunity to blood-borne antigens.


Assuntos
Imunidade Adaptativa , Apresentação de Antígeno , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Células Dendríticas/classificação , Baço/imunologia , Animais , Antígenos/administração & dosagem , Biomarcadores/metabolismo , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD8-Positivos/citologia , Movimento Celular , Células Dendríticas/citologia , Células Dendríticas/imunologia , Transfusão de Eritrócitos , Expressão Gênica , Imunização , Imunofenotipagem , Isoanticorpos/biossíntese , Lipopolissacarídeos/administração & dosagem , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ovalbumina/administração & dosagem , Receptores de Quimiocinas/genética , Receptores de Quimiocinas/imunologia , Baço/citologia
16.
Nat Protoc ; 10(7): 1116-30, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26110716

RESUMO

Hair follicles are mammalian skin organs that periodically and stereotypically regenerate from a small pool of stem cells. Hence, hair follicles are a widely studied model for stem cell biology and regeneration. This protocol describes the use of two-photon laser-scanning microscopy (TPLSM) to study hair regeneration within a living, uninjured mouse. TPLSM provides advantages over conventional approaches, including enabling time-resolved imaging of single hair follicle stem cells. Thus, it is possible to capture behaviors including apoptosis, proliferation and migration, and to revisit the same cells for in vivo lineage tracing. In addition, a wide range of fluorescent reporter mouse lines facilitates TPLSM in the skin. This protocol also describes TPLSM laser ablation, which can spatiotemporally manipulate specific cellular populations of the hair follicle or microenvironment to test their regenerative contributions. The preparation time is variable depending on the goals of the experiment, but it generally takes 30-60 min. Imaging time is dependent on the goals of the experiment. Together, these components of TPLSM can be used to develop a comprehensive understanding of hair regeneration during homeostasis and injury.


Assuntos
Folículo Piloso/fisiologia , Microscopia Intravital/métodos , Regeneração/fisiologia , Células-Tronco Adultas/citologia , Células-Tronco Adultas/fisiologia , Animais , Diferenciação Celular , Linhagem da Célula , Proliferação de Células , Folículo Piloso/citologia , Microscopia Intravital/instrumentação , Camundongos , Camundongos Transgênicos , Microscopia Confocal/instrumentação , Microscopia Confocal/métodos , Nicho de Células-Tronco
17.
Nature ; 522(7554): 94-7, 2015 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-25849774

RESUMO

Tissue homeostasis is achieved through a balance of cell production (growth) and elimination (regression). In contrast to tissue growth, the cells and molecular signals required for tissue regression remain unknown. To investigate physiological tissue regression, we use the mouse hair follicle, which cycles stereotypically between phases of growth and regression while maintaining a pool of stem cells to perpetuate tissue regeneration. Here we show by intravital microscopy in live mice that the regression phase eliminates the majority of the epithelial cells by two distinct mechanisms: terminal differentiation of suprabasal cells and a spatial gradient of apoptosis of basal cells. Furthermore, we demonstrate that basal epithelial cells collectively act as phagocytes to clear dying epithelial neighbours. Through cellular and genetic ablation we show that epithelial cell death is extrinsically induced through transforming growth factor (TGF)-ß activation and mesenchymal crosstalk. Strikingly, our data show that regression acts to reduce the stem cell pool, as inhibition of regression results in excess basal epithelial cells with regenerative abilities. This study identifies the cellular behaviours and molecular mechanisms of regression that counterbalance growth to maintain tissue homeostasis.


Assuntos
Morte Celular , Células Epiteliais/citologia , Folículo Piloso/citologia , Fagocitose , Nicho de Células-Tronco/fisiologia , Células-Tronco/citologia , Animais , Apoptose , Derme/citologia , Derme/metabolismo , Células Epiteliais/metabolismo , Folículo Piloso/metabolismo , Homeostase , Camundongos , Fagócitos/citologia , Regeneração , Transdução de Sinais , Células-Tronco/metabolismo , Fator de Crescimento Transformador beta/metabolismo , beta Catenina/metabolismo
18.
Cell Rep ; 8(5): 1497-508, 2014 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-25176650

RESUMO

To understand how the Bcl6 transcriptional repressor functions in the immune system, we disrupted its RD2 repression domain in mice. Bcl6RD2(MUT) mice exhibit a complete loss of germinal center (GC) formation but retain normal extrafollicular responses. Bcl6RD2(MUT) antigen-engaged B cells migrate to the interfollicular zone and interact with cognate T helper cells. However, these cells fail to complete early GC-commitment differentiation and coalesce as nascent GC aggregates. Bcl6 directly binds and represses trafficking receptors S1pr1 and Gpr183 by recruiting Hdac2 through the RD2 domain. Deregulation of these genes impairs B cell migration and may contribute to GC failure in Bcl6RD2(MUT) mice. The development of functional GC-TFH cells was partially impaired in Bcl6RD2(MUT) mice. In contrast to Bcl6(-/-) mice, Bcl6RD2(MUT) animals experience no inflammatory disease or macrophage deregulation. These results reveal an essential role for RD2 repression in early GC commitment and striking biochemical specificity in Bcl6 control of humoral and innate immune-cell phenotypes.


Assuntos
Linfócitos B/metabolismo , Proteínas de Ligação a DNA/metabolismo , Centro Germinativo/citologia , Animais , Linfócitos B/imunologia , Linfócitos B/fisiologia , Movimento Celular , Citocinas/genética , Citocinas/metabolismo , Proteínas de Ligação a DNA/química , Centro Germinativo/imunologia , Histona Desacetilase 2/metabolismo , Ativação Linfocitária , Camundongos , Mutação , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Proto-Oncogênicas c-bcl-6 , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Lisoesfingolipídeo/metabolismo , Receptores de Esfingosina-1-Fosfato , Linfócitos T Auxiliares-Indutores/imunologia , Linfócitos T Auxiliares-Indutores/metabolismo
19.
PLoS One ; 9(6): e101208, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24979752

RESUMO

The transcriptional repressor BCL6 plays an essential role in the development of germinal center B cells and follicular helper T cells. However, much less is known about the expression and function of BCL6 in other cell types. Here we report that during murine dendritic cell (DC) ontogeny in vivo, BCL6 is not expressed in bone marrow hematopoietic stem cells, common DC precursors and committed precursors of conventional DCs (pre-cDCs), but is elevated in peripheral pre-cDCs. BCL6 protein levels rise as pre-cDCs differentiate into cDCs in secondary lymphoid organs. Elevated protein levels of Bcl6 are observed in all cDC subsets, with CD8α+ cDCs displaying the greatest levels. Co-staining of Ki-67 revealed BCL6hi cDCs to be more proliferative than BCL6lo cDCs. After adjuvant inoculation, BCL6 levels are significantly reduced in the CD11cint MHC class IIhi CD86hi cDCs. Activation-induced BCL6 reduction correlated with reduced proliferation. A LPS injection study further confirmed that, in response to microbial stimuli, BCL6 levels are dynamically regulated during the maturation of CD11cint MHC class IIhi splenic cDCs. This reduction of BCL6 levels in cDCs does not occur after LPS injection in MyD88-/- TRIF-/- mice. Thus, regulation of Bcl6 protein levels is dynamic in murine cDCs during development, maturation and activation in vivo.


Assuntos
Diferenciação Celular , Células Dendríticas/citologia , Células Dendríticas/metabolismo , Proteínas Proto-Oncogênicas c-bcl-6/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/deficiência , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Adjuvantes Imunológicos/farmacologia , Animais , Antígeno CD11c/metabolismo , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Dendríticas/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Antígeno Ki-67/metabolismo , Lipopolissacarídeos/farmacologia , Tecido Linfoide/efeitos dos fármacos , Tecido Linfoide/metabolismo , Camundongos Endogâmicos C57BL , Fator 88 de Diferenciação Mieloide/deficiência , Fator 88 de Diferenciação Mieloide/metabolismo , Baço/citologia
20.
Yale J Biol Med ; 87(1): 3-13, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24600332

RESUMO

Lyme disease, due to infection with the Ixodes-tick transmitted spirochete Borrelia burgdorferi, is the most common tick-transmitted disease in the northern hemisphere. Our understanding of the tick-pathogen-vertebrate host interactions that sustain an enzootic cycle for B. burgdorferi is incomplete. In this article, we describe a method for imaging the feeding of Ixodes scapularis nymphs in real-time using two-photon intravital microscopy and show how this technology can be applied to view the response of Lyme borrelia in the skin of an infected host to tick feeding.


Assuntos
Borrelia burgdorferi/fisiologia , Ixodes/fisiologia , Doença de Lyme/microbiologia , Pele/parasitologia , Infestações por Carrapato/parasitologia , Animais , Vetores Aracnídeos/microbiologia , Vetores Aracnídeos/fisiologia , Vetores Aracnídeos/ultraestrutura , Borrelia burgdorferi/genética , Borrelia burgdorferi/metabolismo , Comportamento Alimentar/fisiologia , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Interações Hospedeiro-Parasita , Interações Hospedeiro-Patógeno , Ixodes/microbiologia , Ixodes/ultraestrutura , Doença de Lyme/transmissão , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Confocal , Microscopia Eletrônica de Varredura , Microscopia de Fluorescência por Excitação Multifotônica , Ninfa/microbiologia , Ninfa/ultraestrutura , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA