Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
2.
Eur J Pediatr ; 182(10): 4289-4308, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37336847

RESUMO

Children with cardiac disease are at a higher risk of cardiac arrest as compared to healthy children. Delivering adequate cardiopulmonary resuscitation (CPR) can be challenging due to anatomic characteristics, risk profiles, and physiologies. We aimed to review the physiological aspects of resuscitation in different cardiac physiologies, summarize the current recommendations, provide un update of current literature, and highlight knowledge gaps to guide research efforts. We specifically reviewed current knowledge on resuscitation strategies for high-risk categories of patients including patients with single-ventricle physiology, right-sided lesions, right ventricle restrictive physiology, left-sided lesions, myocarditis, cardiomyopathy, pulmonary arterial hypertension, and arrhythmias. Cardiac arrest occurs in about 1% of hospitalized children with cardiac disease, and in 5% of those admitted to an intensive care unit. Mortality after cardiac arrest in this population remains high, ranging from 30 to 65%. The neurologic outcome varies widely among studies, with a favorable neurologic outcome at discharge observed in 64%-95% of the survivors. Risk factors for cardiac arrest and associated mortality include younger age, lower weight, prematurity, genetic syndrome, single-ventricle physiology, arrhythmias, pulmonary arterial hypertension, comorbidities, mechanical ventilation preceding cardiac arrest, surgical complexity, higher vasoactive-inotropic score, and factors related to resources and institutional characteristics. Recent data suggest that Extracorporeal membrane oxygenation CPR (ECPR) may be a valid strategy in centers with expertise. Overall, knowledge on resuscitation strategies based on physiology remains limited, with a crucial need for further research in this field. Collaborative and interprofessional studies are highly needed to improve care and outcomes for this high-risk population. What is Known: • Children with cardiac disease are at high risk of cardiac arrest, and cardiopulmonary resuscitation may be challenging due to unique characteristics and different physiologies. • Mortality after cardiac arrest remains high and neurologic outcomes suboptimal. What is New: • We reviewed the unique resuscitation challenges, current knowledge, and recommendations for different cardiac physiologies. • We highlighted knowledge gaps to guide research efforts aimed to improve care and outcomes in this high-risk population.


Assuntos
Reanimação Cardiopulmonar , Parada Cardíaca , Cardiopatias , Hipertensão Arterial Pulmonar , Criança , Humanos , Hipertensão Arterial Pulmonar/complicações , Parada Cardíaca/terapia , Parada Cardíaca/etiologia , Cardiopatias/etiologia , Arritmias Cardíacas/complicações , Estudos Retrospectivos , Resultado do Tratamento
3.
Sci Immunol ; 8(83): eadh3455, 2023 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-37146127

RESUMO

Rare immune-mediated cardiac tissue inflammation can occur after vaccination, including after SARS-CoV-2 mRNA vaccines. However, the underlying immune cellular and molecular mechanisms driving this pathology remain poorly understood. Here, we investigated a cohort of patients who developed myocarditis and/or pericarditis with elevated troponin, B-type natriuretic peptide, and C-reactive protein levels as well as cardiac imaging abnormalities shortly after SARS-CoV-2 mRNA vaccination. Contrary to early hypotheses, patients did not demonstrate features of hypersensitivity myocarditis, nor did they have exaggerated SARS-CoV-2-specific or neutralizing antibody responses consistent with a hyperimmune humoral mechanism. We additionally found no evidence of cardiac-targeted autoantibodies. Instead, unbiased systematic immune serum profiling revealed elevations in circulating interleukins (IL-1ß, IL-1RA, and IL-15), chemokines (CCL4, CXCL1, and CXCL10), and matrix metalloproteases (MMP1, MMP8, MMP9, and TIMP1). Subsequent deep immune profiling using single-cell RNA and repertoire sequencing of peripheral blood mononuclear cells during acute disease revealed expansion of activated CXCR3+ cytotoxic T cells and NK cells, both phenotypically resembling cytokine-driven killer cells. In addition, patients displayed signatures of inflammatory and profibrotic CCR2+ CD163+ monocytes, coupled with elevated serum-soluble CD163, that may be linked to the late gadolinium enhancement on cardiac MRI, which can persist for months after vaccination. Together, our results demonstrate up-regulation in inflammatory cytokines and corresponding lymphocytes with tissue-damaging capabilities, suggesting a cytokine-dependent pathology, which may further be accompanied by myeloid cell-associated cardiac fibrosis. These findings likely rule out some previously proposed mechanisms of mRNA vaccine--associated myopericarditis and point to new ones with relevance to vaccine development and clinical care.


Assuntos
Antineoplásicos , COVID-19 , Miocardite , Humanos , Miocardite/etiologia , SARS-CoV-2 , Leucócitos Mononucleares , Vacinas contra COVID-19/efeitos adversos , Meios de Contraste , COVID-19/prevenção & controle , Gadolínio , Células Matadoras Naturais , Citocinas
4.
Curr Opin Cardiol ; 38(4): 375-379, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37016950

RESUMO

PURPOSE OF REVIEW: Effective communication and shared decision-making is crucial in caring for children with congenital or acquired heart disease. Despite high mortality, complications related to interventions, and suffering in pediatric advanced heart disease, there is a disproportionate lack of research and advancements in communication and shared decision-making surrounding perioperative risks and advance care planning. We have comprehensively reviewed recent research on this multifaceted topic in the past 1.5 years to highlight major findings and propose priorities for future research. RECENT FINDINGS: Research has focused on parental perception of clinician/team communication with a notable paucity of research investigating the clinician perception of barriers to effective communication. Although there are discrepancies between parental and clinician perception, lack of trust between the patient's family and provider was acknowledged as a barrier by both parents and clinicians. Insight into interprofessional needs and expansion of structured language for discussions around shared decision-making should be prioritized. SUMMARY: Clinician discomfort with communication skills and conveying uncertainty in prognosis are two major areas for future research. On the basis of the literature to date, the focus should be placed on interprofessional needs and structured language for discussions around shared decision-making.


Assuntos
Comunicação , Tomada de Decisões , Humanos , Criança , Prognóstico
5.
Yale J Biol Med ; 96(1): 23-42, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-37009190

RESUMO

Objective: We aim to comprehensively describe the transcriptional activity and signaling of pulmonary parenchymal and immune cells before and after cardiopulmonary bypass (CPB) by using a multi-omic approach coupled with functional cellular assays. We hypothesize that key signaling pathways from specific cells within the lung alter pulmonary endothelial cell function resulting in worsening or improving disease. Methods: We collected serial tracheobronchial lavage samples from intubated patients less than 2-years-old undergoing surgery with CPB. Samples were immediately processed for single cell RNA sequencing (10x Genomics). Cell clustering, cell-type annotation, and visualization were performed, and differentially expressed genes (DEG) between serial samples were identified. Metabolomic and proteomic analyses were performed on the supernatant using mass spectrometry and a multiplex assay (SomaScan) respectively. Functional assays were done using electric cell-substrate impedance sensing to measure resistance across human pulmonary microvascular endothelial cells (HPMECs). Results: Analysis of eight patients showed a heterogeneous mixture of pulmonary parenchymal and immune cells. Cell clustering demonstrated time-dependent changes in the transcriptomic signature indicating altered cellular phenotypes after CPB. DEG analysis was represented by genes involved in host defense, innate immunity, and the mitochondrial respiratory transport chain. Ingenuity pathway analysis showed upregulation of the integrated stress response across all cell types after CPB. Metabolomic analysis demonstrated upregulation of ascorbate and aldarate metabolism. Unbiased proteomic analysis revealed upregulation of proteins involved in cytokine and chemokine pathways. Post-CPB patient supernatant improved HMPEC barrier function, suggesting a protective cellular response to CPB. Conclusion: Children who undergo CPB for cardiac surgery have distinct cell populations, transcriptional activity, and metabolism that change over time. The response to ischemia-reperfusion injury in the lower airway of children appears to be protective, with the need to identify potential targets through future investigations.


Assuntos
Ponte Cardiopulmonar , Células Endoteliais , Criança , Humanos , Pré-Escolar , Ponte Cardiopulmonar/efeitos adversos , Ponte Cardiopulmonar/métodos , Permeabilidade Capilar , Proteômica , Pulmão/irrigação sanguínea , Pulmão/metabolismo
6.
Pediatr Cardiol ; 44(6): 1271-1276, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37060477

RESUMO

Hypoxemia is used to stratify severity in acute respiratory failure (ARF) but is less useful in cyanotic congenital heart disease (CCHD) due to an inability to differentiate hypoxemia from lung injury versus cardiac shunting. Therefore, we aimed to determine whether variables related to respiratory mechanics were associated with outcomes to assist in stratifying ARF severity in pediatric CCHD. We performed a retrospective cohort study from a single cardiac intensive care unit enrolling children with CCHD with ARF requiring mechanical ventilation between 2011 and 2019. Time-averaged ventilator settings and oxygenation data in the first 24 h of ARF were screened for association with the primary outcome of 28-day mortality. Of 344 eligible patients, peak inspiratory pressure (PIP) and driving pressure (ΔP) were selected as candidate variables to stratify ARF severity. PIP (OR 1.10, 95% CI 1.02-1.19) and ΔP (1.11, 95% CI 1.01-1.24) were associated with higher mortality and fewer ventilator-free days (VFDs) at 28 days after adjusting for age, severity of cardiac history, and FiO2. A three-level (mild, moderate, severe) severity stratification was established for both PIP (≤ 20, 21-29, ≥ 30) and ΔP (≤ 16, 17-24, ≥ 25), showing increasing mortality (both P < 0.01), decreasing VFDs and increasing ventilator days in survivors (all P < 0.05) across increasing pressures. Overall, we found that higher PIP and ΔP were associated with mortality and duration of ventilation across a three-level severity stratification system in pediatric CCHD with ARF, providing a practical method to prognosticate in subjects with multifactorial etiologies for hypoxemia.


Assuntos
Cardiopatias Congênitas , Síndrome do Desconforto Respiratório , Insuficiência Respiratória , Humanos , Criança , Estudos Retrospectivos , Respiração Artificial , Insuficiência Respiratória/etiologia , Insuficiência Respiratória/terapia , Hipóxia/etiologia , Cardiopatias Congênitas/complicações
7.
Semin Respir Crit Care Med ; 44(1): 66-74, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36646086

RESUMO

The coronavirus disease 2019 (COVID-19) pandemic has affected individuals of all ages across. Although children generally experience a benign illness from COVID-19, the emergence of novel variants of the virus has resulted in significant changes in the morbidity and mortality rates for this age group. Currently, COVID-19 is the eighth leading cause of pediatric deaths in the United States. In addition to acute respiratory illness, some children can develop a severe postinfectious condition known as a multisystem inflammatory syndrome in children, which can progress to rapid-onset cardiogenic shock. Recovery from COVID-19 can also be slow for some children, resulting in persistent or reoccurring symptoms for months, commonly referred to as long COVID. These postinfectious sequelae are often distressing for children and their parents, can negatively impact the quality of life, and impose a considerable burden on the health care system. In this article, we review the clinical epidemiology of pediatric COVID-19 and outline the management considerations for its acute and postacute manifestations.


Assuntos
COVID-19 , Criança , Humanos , COVID-19/epidemiologia , COVID-19/complicações , Síndrome de COVID-19 Pós-Aguda , Qualidade de Vida , SARS-CoV-2 , Progressão da Doença
8.
J Immunol ; 209(7): 1314-1322, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-36165196

RESUMO

Postviral bacterial infections are a major health care challenge in coronavirus infections, including COVID-19; however, the coronavirus-specific mechanisms of increased host susceptibility to secondary infections remain unknown. In humans, coronaviruses, including SARS-CoV-2, infect lung immune cells, including alveolar macrophages, a phenotype poorly replicated in mouse models of SARS-CoV-2. To overcome this, we used a mouse model of native murine ß-coronavirus that infects both immune and structural cells to investigate coronavirus-enhanced susceptibility to bacterial infections. Our data show that coronavirus infection impairs the host ability to clear invading bacterial pathogens and potentiates lung tissue damage in mice. Mechanistically, coronavirus limits the bacterial killing ability of macrophages by impairing lysosomal acidification and fusion with engulfed bacteria. In addition, coronavirus-induced lysosomal dysfunction promotes pyroptotic cell death and the release of IL-1ß. Inhibition of cathepsin B decreased cell death and IL-1ß release and promoted bacterial clearance in mice with postcoronavirus bacterial infection.


Assuntos
Infecções Bacterianas , COVID-19 , Coinfecção , Vírus da Hepatite Murina , Animais , Bactérias , Catepsina B , Humanos , Pulmão , Lisossomos , Camundongos , SARS-CoV-2
10.
J Virol ; 96(2): e0124121, 2022 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-34705554

RESUMO

Coronaviruses are a major health care threat to humankind. Currently, the host factors that contribute to limit disease severity in healthy young patients are not well defined. Interferons are key antiviral molecules, especially type I and type III interferons. The role of these interferons during coronavirus disease is a subject of debate. Here, using mice that are deficient in type I (IFNAR1-/-), type III (IFNLR1-/-), or both (IFNAR1/LR1-/-) interferon signaling pathways and murine-adapted coronavirus (MHV-A59) administered through the intranasal route, we define the role of interferons in coronavirus infection. We show that type I interferons play a major role in host survival in this model, while a minimal role of type III interferons was manifested only in the absence of type I interferons or during a lethal dose of coronavirus. IFNAR1-/- and IFNAR1/LR1-/- mice had an uncontrolled viral burden in the airways and lung and increased viral dissemination to other organs. The absence of only type III interferon signaling had no measurable difference in the viral load. The increased viral load in IFNAR1-/- and IFNAR1/LR1-/- mice was associated with increased tissue injury, especially evident in the lung and liver. Type I but not type III interferon treatment was able to promote survival if treated during early disease. Further, we show that type I interferon signaling in macrophages contributes to the beneficial effects during coronavirus infection in mice. IMPORTANCE The antiviral and pathological potential of type I and type III interferons during coronavirus infection remains poorly defined, and opposite findings have been reported. We report that both type I and type III interferons have anticoronaviral activities, but their potency and organ specificity differ. Type I interferon deficiency rendered the mice susceptible to even a sublethal murine coronavirus infection, while the type III interferon deficiency impaired survival only during a lethal infection or during a sublethal infection in the absence of type I interferon signaling. While treatment with both type I and III interferons promoted viral clearance in the airways and lung, only type I interferons promoted the viral clearance in the liver and improved host survival upon early treatment (12 h postinfection). This study demonstrates distinct roles and potency of type I and type III interferons and their therapeutic potential during coronavirus lung infection.


Assuntos
Infecções por Coronavirus/imunologia , Interferon Tipo I/imunologia , Interferons/imunologia , Pulmão , Animais , Feminino , Pulmão/imunologia , Pulmão/virologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Interferon lambda
11.
Immunity ; 54(5): 1083-1095.e7, 2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33891889

RESUMO

Multisystem inflammatory syndrome in children (MIS-C) is a life-threatening post-infectious complication occurring unpredictably weeks after mild or asymptomatic SARS-CoV-2 infection. We profiled MIS-C, adult COVID-19, and healthy pediatric and adult individuals using single-cell RNA sequencing, flow cytometry, antigen receptor repertoire analysis, and unbiased serum proteomics, which collectively identified a signature in MIS-C patients that correlated with disease severity. Despite having no evidence of active infection, MIS-C patients had elevated S100A-family alarmins and decreased antigen presentation signatures, indicative of myeloid dysfunction. MIS-C patients showed elevated expression of cytotoxicity genes in NK and CD8+ T cells and expansion of specific IgG-expressing plasmablasts. Clinically severe MIS-C patients displayed skewed memory T cell TCR repertoires and autoimmunity characterized by endothelium-reactive IgG. The alarmin, cytotoxicity, TCR repertoire, and plasmablast signatures we defined have potential for application in the clinic to better diagnose and potentially predict disease severity early in the course of MIS-C.


Assuntos
COVID-19/imunologia , COVID-19/patologia , SARS-CoV-2/imunologia , Síndrome de Resposta Inflamatória Sistêmica/imunologia , Síndrome de Resposta Inflamatória Sistêmica/patologia , Adolescente , Alarminas/imunologia , Autoanticorpos/imunologia , Linfócitos T CD8-Positivos/imunologia , Criança , Pré-Escolar , Citotoxicidade Imunológica/genética , Endotélio/imunologia , Endotélio/patologia , Humanos , Células Matadoras Naturais/imunologia , Células Mieloides/imunologia , Plasmócitos/imunologia , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/imunologia , Índice de Gravidade de Doença
12.
PLoS Biol ; 19(3): e3001143, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33730024

RESUMO

There are currently limited Food and Drug Administration (FDA)-approved drugs and vaccines for the treatment or prevention of Coronavirus Disease 2019 (COVID-19). Enhanced understanding of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection and pathogenesis is critical for the development of therapeutics. To provide insight into viral replication, cell tropism, and host-viral interactions of SARS-CoV-2, we performed single-cell (sc) RNA sequencing (RNA-seq) of experimentally infected human bronchial epithelial cells (HBECs) in air-liquid interface (ALI) cultures over a time course. This revealed novel polyadenylated viral transcripts and highlighted ciliated cells as a major target at the onset of infection, which we confirmed by electron and immunofluorescence microscopy. Over the course of infection, the cell tropism of SARS-CoV-2 expands to other epithelial cell types including basal and club cells. Infection induces cell-intrinsic expression of type I and type III interferons (IFNs) and interleukin (IL)-6 but not IL-1. This results in expression of interferon-stimulated genes (ISGs) in both infected and bystander cells. This provides a detailed characterization of genes, cell types, and cell state changes associated with SARS-CoV-2 infection in the human airway.


Assuntos
Brônquios/patologia , COVID-19/diagnóstico , Expressão Gênica , SARS-CoV-2/isolamento & purificação , Análise de Célula Única/métodos , Adulto , Brônquios/virologia , COVID-19/imunologia , COVID-19/patologia , COVID-19/virologia , Células Cultivadas , Epitélio/patologia , Epitélio/virologia , Humanos , Imunidade Inata , Estudos Longitudinais , SARS-CoV-2/genética , Transcriptoma , Tropismo Viral
13.
medRxiv ; 2021 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-33300011

RESUMO

Multisystem inflammatory syndrome in children (MIS-C) is a life-threatening post-infectious complication occurring unpredictably weeks after mild or asymptomatic SARS-CoV2 infection in otherwise healthy children. Here, we define immune abnormalities in MIS-C compared to adult COVID-19 and pediatric/adult healthy controls using single-cell RNA sequencing, antigen receptor repertoire analysis, unbiased serum proteomics, and in vitro assays. Despite no evidence of active infection, we uncover elevated S100A-family alarmins in myeloid cells and marked enrichment of serum proteins that map to myeloid cells and pathways including cytokines, complement/coagulation, and fluid shear stress in MIS-C patients. Moreover, NK and CD8 T cell cytotoxicity genes are elevated, and plasmablasts harboring IgG1 and IgG3 are expanded. Consistently, we detect elevated binding of serum IgG from severe MIS-C patients to activated human cardiac microvascular endothelial cells in culture. Thus, we define immunopathology features of MIS-C with implications for predicting and managing this SARS-CoV2-induced critical illness in children.

14.
bioRxiv ; 2020 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-32511382

RESUMO

SARS-CoV-2, the causative agent of COVID-19, has tragically burdened individuals and institutions around the world. There are currently no approved drugs or vaccines for the treatment or prevention of COVID-19. Enhanced understanding of SARS-CoV-2 infection and pathogenesis is critical for the development of therapeutics. To reveal insight into viral replication, cell tropism, and host-viral interactions of SARS-CoV-2 we performed single-cell RNA sequencing of experimentally infected human bronchial epithelial cells (HBECs) in air-liquid interface cultures over a time-course. This revealed novel polyadenylated viral transcripts and highlighted ciliated cells as a major target of infection, which we confirmed by electron microscopy. Over the course of infection, cell tropism of SARS-CoV-2 expands to other epithelial cell types including basal and club cells. Infection induces cell-intrinsic expression of type I and type III IFNs and IL6 but not IL1. This results in expression of interferon-stimulated genes in both infected and bystander cells. We observe similar gene expression changes from a COVID-19 patient ex vivo. In addition, we developed a new computational method termed CONditional DENSity Embedding (CONDENSE) to characterize and compare temporal gene dynamics in response to infection, which revealed genes relating to endothelin, angio-genesis, interferon, and inflammation-causing signaling pathways. In this study, we conducted an in-depth analysis of SARS-CoV-2 infection in HBECs and a COVID-19 patient and revealed genes, cell types, and cell state changes associated with infection.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA