Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 16(13)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-39000698

RESUMO

Orthotic devices play an important role in medical treatment, addressing various pathologies and promoting patient recovery. Customization of orthoses to fit individual patient morphologies and needs is essential for optimal functionality and patient comfort. The advent of additive manufacturing has revolutionized the biomedical field, offering advantages such as cost reduction, increased personalization, and enhanced dimensional adaptability for orthotics manufacturing. This research focuses on the impact strength of nine polymeric materials printed by additive manufacturing, including an evaluation of the materials' performance under varying conditions comprising different printing directions (vertical and horizontal) and exposure to artificial sweat for different durations (0 days, 24 days, and 189 days). The results showed that Nylon 12 is good for short-term (24 days) immersion, with absorbed energies of 78 J and 64 J for the vertical and horizontal directions, whereas Polycarbonate (PC) is good for long-term immersion (189 days), with absorbed energies of 66 J and 78 J for the vertical and horizontal directions. Overall, the findings contribute to a better understanding of the suitability of these materials for biomedical applications, considering both short-term and long-term exposure to physiological and environmental conditions.

2.
Materials (Basel) ; 17(12)2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38930283

RESUMO

The integration of recycled polymers into additive manufacturing (AM) processes offers a promising opportunity for advancing sustainability within the manufacturing industry. This review paper summarizes existing research and developments related to the use of recycled materials in AM, focusing on distinct polymers, such as polylactic acid (PLA), polyethylene terephthalate (PET), and acrylonitrile butadiene styrene (ABS), among others. Key topics explored include the availability of recycled filaments on the market, challenges associated with material variability and traceability, and efforts toward establishing ethical product standards and sustainability characterization methodologies. Regulatory considerations and standards development by organizations such as ASTM and ISO are discussed, along with recommendations for future advancements in improving the sustainability of filament recycling and achieving net-zero emissions in AM processes. The collective efforts outlined in this paper underscore the potential of recycled polymers in AM to foster a more sustainable and environmentally friendly manufacturing industry.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA