Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 344: 118468, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37384994

RESUMO

Recent global groundwater overpumping is threatening ecosystem stability and food security, particularly in arid basins. A solid investigation regarding the drivers of groundwater depletion is vital for groundwater restoration, hitherto, yet it remains largely unquantified. Here, a framework to quantify the contribution of natural forcing (NF) and anthropogenic perturbations (AP) to groundwater storage anomalies (GWSA) variability by separating the GWSA estimated by the Gravity Recovery and Climate Experiment (GRACE) satellite into natural- and human-induced GWSA was proposed in the northwest endorheic basin (NWEB) of China. Further, a multiple linear regression model was established for GWSA change prediction. Our results showed that, during the period 2003-2020, the GWSA depleted at a rate of 0.25 cm yr-1 in the entire NWEB. In addition, GWSA was found to decrease significantly (exceeding 1 cm yr-1) in the west of NWEB where there are heavily irrigated areas, and has become one of the regions with the most serious groundwater depletion in China. Whereas a significantly increasing trend (greater than 0.5 cm yr-1) was observed in the Qaidam basin and south part of the Tarim River basin, becoming a groundwater enrichment reservoir in NWEB. The negative contribution of AP to groundwater depletion has increased from 3% to 95% in the last decade, as determined by separating the effects of NF and AP on GWSA. The rapid expansion of the cropland area and the increase in water use due to population growth are investigated to be the main reasons for GWSA depletion, particularly in the North Tianshan Rivers, Turpan-Hami, and Tarim River basins. Therefore, we conclude that AP are dominating and accelerating groundwater depletion in the NWEB. The increase of GWSA in the Qaidam basin has been attributed to the increase in solid water melt and regional precipitation. The western route project of China's south-north water diversion and water-saving irrigation are important ways to solve the problem of groundwater depletion in NWEB. Our results emphasize that a more feasible framework capable of reliably identifying the driving factors of groundwater storage change is a necessary tool for promoting the sustainable management of groundwater resources under both NF and AP in arid endorheic basins.


Assuntos
Ecossistema , Água Subterrânea , Humanos , China , Abastecimento de Água , Rios , Água
2.
Environ Monit Assess ; 194(9): 642, 2022 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-35930072

RESUMO

Drought episodes across the Himalayas are inevitable due to rapidly increasing atmospheric temperatures and uncertainties in rainfall patterns. Tarai of Nepal is a tropical region located in the foothills of the Central Himalaya as a country's food granary with a contribution of over 50% to the entire country's agricultural production. However, there is a lack of detailed studies exploring the spatiotemporal occurrence of drought in these regions under the changing climate. In this study, we used the ensemble of nine climate models from the Coupled Model Intercomparison Project Phase 6 (CMIP6) under two shared socio-economic pathways (SSPs), namely SSP245 (an intermediate development pathway) and SSP585 (a high development pathway), to assess anticipated drought during the mid-century. We used bias-corrected gridded data from the Worldclim to project drought events by the end of the mid-century based on the historical period (1989-2018). We computed historical and projected Thornthwaite moisture index (TMI) to evaluate soil moisture conditions on a seasonal scale for the Tarai region's Eastern, Central, and Western parts. The model ensemble projected a significant increase in precipitation and temperature for the entire Tarai by the end of mid-century. However, the winter and spring seasons are projected to suffer precipitation deficiency and a temperature rise. Our results indicated that the Eastern Tarai would likely experience a decrease in winter precipitation. We emphasize that the presented spatiotemporal pattern of the MI will be instrumental in addressing the irrigation facility's needs, choice, and rotation of crops under the changing climate scenarios and in improving our mitigation measures and adaptation plans for sustainability of the agriculture in drought-prone areas.


Assuntos
Mudança Climática , Secas , Agricultura , Monitoramento Ambiental/métodos , Nepal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA