RESUMO
Aedes notoscriptus (Skuse), the Australian backyard mosquito, is a pestiferous daytime-biting species native to Australia and the surrounding southwestern Pacific region. It is suspected to play a role in the transmission of several arboviruses and is considered a competent vector of dog heartworm, Dirofilaria immitis (Leidy). This highly adaptable mosquito thrives in natural and artificial water-holding containers in both forested and urbanized areas, from tropical to temperate climates, and has benefitted from a close association with humans, increasing in abundance within its native range. It invaded and successfully established in New Zealand as well as in previously unoccupied temperate and arid regions of Australia. Ae. notoscriptus was discovered in Los Angeles County, CA, in 2014, marking the first time this species had been found outside the southwestern Pacific region. By the end of 2019, immature and adult mosquitoes had been collected from 364 unique locations within 44 cities spanning three southern California counties. The discovery, establishment, and rapid spread of this species in urban areas may signal the global movement and advent of a new invasive container-inhabiting species. The biting nuisance, public health, and veterinary health implications associated with the invasion of southern California by this mosquito are discussed.
Assuntos
Aedes , Distribuição Animal , Espécies Introduzidas , Mosquitos Vetores , Animais , California , Dirofilaria immitis/fisiologia , Dirofilariose/transmissão , Feminino , MasculinoRESUMO
Purpose of Review: In 2020, the Appropriations Committee for the U.S. House of Representatives directed the CDC to develop a national One Health framework to combat zoonotic diseases, including sylvatic plague, which is caused by the flea-borne bacterium Yersinia pestis. This review builds upon that multisectoral objective. We aim to increase awareness of Y. pestis and to highlight examples of plague mitigation for One Health purposes (i.e., to achieve optimal health outcomes for people, animals, plants, and their shared environment). We draw primarily upon examples from the USA, but also discuss research from Madagascar and Uganda where relevant, as Y. pestis has emerged as a zoonotic threat in those foci. Recent Findings: Historically, the bulk of plague research has been directed at the disease in humans. This is not surprising, given that Y. pestis is a scourge of human history. Nevertheless, the ecology of Y. pestis is inextricably linked to other mammals and fleas under natural conditions. Accumulating evidence demonstrates Y. pestis is an unrelenting threat to multiple ecosystems, where the bacterium is capable of significantly reducing native species abundance and diversity while altering competitive and trophic relationships, food web connections, and nutrient cycles. In doing so, Y. pestis transforms ecosystems, causing "shifting baselines syndrome" in humans, where there is a gradual shift in the accepted norms for the condition of the natural environment. Eradication of Y. pestis in nature is difficult to impossible, but effective mitigation is achievable; we discuss flea vector control and One Health implications in this context. Summary: There is an acute need to rapidly expand research on Y. pestis, across multiple host and flea species and varied ecosystems of the Western US and abroad, for human and environmental health purposes. The fate of many wildlife species hangs in the balance, and the implications for humans are profound in some regions. Collaborative multisectoral research is needed to define the scope of the problem in each epidemiological context and to identify, refine, and implement appropriate and effective mitigation practices.
RESUMO
In California, the western blacklegged tick, Ixodes pacificus Cooley and Kohls, is the principal vector of the Borrelia burgdorferi sensu lato (sl) complex (Spirochaetales: Spirochaetaceae, Johnson et al.), which includes the causative agent of Lyme disease (B. burgdorferi sensu stricto). Ixodes pacificus nymphs were sampled from 2015 to 2017 at one Sierra Nevada foothill site to evaluate our efficiency in collecting this life stage, characterize nymphal seasonality, and identify environmental factors affecting their abundance and infection with B. burgdorferi sl. To assess sampling success, we compared the density and prevalence of I. pacificus nymphs flagged from four questing substrates (logs, rocks, tree trunks, leaf litter). Habitat characteristics (e.g., canopy cover, tree species) were recorded for each sample, and temperature and relative humidity were measured hourly at one location. Generalized linear mixed models were used to assess environmental factors associated with I. pacificus abundance and B. burgdorferi sl infection. In total, 2,033 substrates were sampled, resulting in the collection of 742 I. pacificus nymphs. Seasonal abundance of nymphs was bimodal with peak activity occurring from late March through April and a secondary peak in June. Substrate type, collection year, month, and canopy cover were all significant predictors of nymphal density and prevalence. Logs, rocks, and tree trunks had significantly greater nymphal densities and prevalences than leaf litter. Cumulative annual vapor pressure deficit was the only significant climatic predictor of overall nymphal I. pacificus density and prevalence. No associations were observed between the presence of B. burgdorferi sl in nymphs and environmental variables.
Assuntos
Ixodes , Animais , Vetores Aracnídeos/microbiologia , Vetores Aracnídeos/fisiologia , Borrelia burgdorferi , California , Ecossistema , Ixodes/microbiologia , Ixodes/fisiologia , Doença de Lyme/epidemiologia , Ninfa/microbiologia , Ninfa/fisiologia , Dinâmica Populacional , Estações do Ano , TemperaturaRESUMO
The ecology of Lyme borreliosis is complex in northwestern California, with several potential reservoir hosts, tick vectors, and genospecies of Borrelia burgdorferi sensu lato. The primary objective of this study was to determine the fine-scale spatial distribution of different genospecies in four rodent species, the California ground squirrel (Otospermophilus beecheyi), northern flying squirrel (Glaucomys sabrinus), dusky-footed woodrat (Neotoma fuscipes), and Allen's chipmunk (Neotamias senex). Rodents were live-trapped between June 2004 and May 2005 at the Hoopa Valley Tribal Reservation (HVTR) in Humboldt County, California. Ear-punch biopsies obtained from each rodent were tested by polymerase chain reaction (PCR) and sequencing analysis. The programs ArcGIS and SaTScan were used to examine the spatial distribution of genospecies. Multinomial log-linear models were used to model habitat and host-specific characteristics and their effect on the presence of each borrelial genospecies. The Akaike information criterion (AICc) was used to compare models and determine model fit. Borrelia burgdorferi sensu stricto was primarily associated with chipmunks and B. bissettiae largely with woodrats. The top model included the variables "host species", "month", and "elevation" (weight = 0.84). Spatial clustering of B. bissettiae was detected in the northwestern section of the HVTR, whereas B. burgdorferi sensu stricto was clustered in the southeastern section. We conclude that the spatial distribution of these borreliae are driven at least in part by host species, time-of-year, and elevation.