Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Plant Physiol Biochem ; 201: 107907, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37515894

RESUMO

To avoid human health endangerment via the food chain, the investigation of Cd's effects on plant growth and development, and the discovery of various compounds that would mitigate the toxic effects of Cd, are essential. Galactoglucomannan oligosaccharides (GGMOs) are biologically active compounds, which improve the growth and development of plants. Therefore, the impact of GGMOs on the mitigation of Cd toxicity on maize (Zea mays L.) protoplasts was the main objective of this research. Here, protoplast viability, de novo cell wall regeneration on protoplasts' surface and Cd-uptake by protoplasts were studied. To study the influence of different treatments over time, the protoplasts were sampled on various days during the 14-day-long cultivation. The medium containing 2,4-dichlorophenoxyacetic acid, 6-benzylaminopurine, and GGMOs in a 10-9 M concentration with a pH of 3.8 was found to be optimal for protoplast cultivation. The toxic effect of Cd2+, which was evident already on the 2nd day of cultivation, resulted in decreased protoplast viability, the de novo cell wall regeneration, and in increased Cd-uptake. However, the application of GGMOs on Cd-stressed protoplasts increased cell wall regeneration. Fully or partly regenerated cell walls decreased the uptake of Cd2+ through the plasma membrane and improved protoplast viability. This is the first study that confirmed that biologically active oligosaccharides promote cell wall regeneration on the protoplast surface in both non-stress and Cd-stress conditions.


Assuntos
Cádmio , Zea mays , Humanos , Cádmio/metabolismo , Zea mays/metabolismo , Protoplastos/metabolismo , Parede Celular/metabolismo , Oligossacarídeos/farmacologia , Oligossacarídeos/metabolismo
2.
Environ Sci Pollut Res Int ; 30(37): 87102-87117, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37418187

RESUMO

Cadmium (Cd) is a transition metal and hazardous pollutant that has many toxic effects on plants. This heavy metal poses a health risk for both humans and animals. The cell wall is the first structure of a plant cell that is in contact with Cd; therefore, it can change its composition and/or ratio of wall components accordingly. This paper investigates the changes in the anatomy and cell wall architecture of maize (Zea mays L.) roots grown for 10 days in the presence of auxin indole-3-butyric acid (IBA) and Cd. The application of IBA in the concentration 10-9 M delayed the development of apoplastic barriers, decreased the content of lignin in the cell wall, increased the content of Ca2+ and phenols, and influenced the composition of monosaccharides in polysaccharide fractions when compared to the Cd treatment. Application of IBA improved the Cd2+ fixation to the cell wall and increased the endogenous concentration of auxin depleted by Cd treatment. The proposed scheme from obtained results may explain the possible mechanisms of the exogenously applied IBA and its effects on the changes in the binding of Cd2+ within the cell wall, and on the stimulation of growth that resulted in the amelioration of Cd stress.


Assuntos
Ácidos Indolacéticos , Poluentes do Solo , Humanos , Ácidos Indolacéticos/metabolismo , Cádmio/análise , Zea mays , Raízes de Plantas/metabolismo , Parede Celular/metabolismo , Poluentes do Solo/metabolismo
3.
Ecotoxicol Environ Saf ; 255: 114777, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36931090

RESUMO

Phosphate fertilisers and past mining activity are significant source of cadmium (Cd) pollution; thus, the concentration of Cd in agricultural soils has been substantially rising. Various substances have been tested for their potential to alleviate the toxicity of Cd and stimulate the accumulation of Cd in plant organs. This study brought new insight of the impact of galactoglucomannan oligosaccharides (GGMOs) on the maize plants grown under/in Cd stress. The application of GGMOs reduced concentration of Cd in the maize leaves and thus GGMOs increased their growth (by 24%), concentration of photosynthetic pigments (up to 39.4%), effective quantum yield of photosystem II (up to 29.6%), and net photosynthetic rate (up to 19.6%). The concentrations of stress markers increased in the Cd and Cd + GGMOs treatment; however, significantly lower concentration was detected in the Cd + GGMOs treatment (malondialdehyde by 21.7%, hydrogen peroxide by 13%). The concentration of auxin increased almost by two-fold in the Cd + GGMOs treatment compared to the Cd treatment. The recovered auxin level and enhanced nutrient uptake are proposed mechanisms of GGMOs' action during stress. GGMOs are molecules with biostimulant potential that could support vitality of maize plants in Cd stress.


Assuntos
Fenômenos Fisiológicos , Poluentes do Solo , Cádmio/toxicidade , Zea mays , Raízes de Plantas , Ácidos Indolacéticos , Oligossacarídeos/farmacologia , Poluentes do Solo/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA