Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Proteome Res ; 23(3): 869-880, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38353246

RESUMO

The metaproteomic approach is an attractive way to describe a microbiome at the functional level, allowing the identification and quantification of proteins across a broad dynamic range as well as the detection of post-translational modifications. However, it remains relatively underutilized, mainly due to technical challenges that should be addressed, including the complexity of extracting proteins from heterogeneous microbial communities. Here, we show that a ChipFilter microfluidic device coupled to a liquid chromatography tandem mass spectrometry (LC-MS/MS) setup can be successfully used for the identification of microbial proteins. Using cultures of Escherichia coli, Bacillus subtilis, and Saccharomyces cerevisiae, we have shown that it is possible to directly lyse the cells and digest the proteins in the ChipFilter to allow the identification of a higher number of proteins and peptides than that by standard protocols, even at low cell density. The peptides produced are overall longer after ChipFilter digestion but show no change in their degree of hydrophobicity. Analysis of a more complex mixture of 17 species from the gut microbiome showed that the ChipFilter preparation was able to identify and estimate the amounts of 16 of these species. These results show that ChipFilter can be used for the proteomic study of microbiomes, particularly in the case of a low volume or cell density. The mass spectrometry data have been deposited on the ProteomeXchange Consortium via the PRIDE partner repository with the data set identifier PXD039581.


Assuntos
Consórcios Microbianos , Microfluídica , Cromatografia Líquida , Proteômica , Espectrometria de Massas em Tandem , Escherichia coli/genética , Saccharomyces cerevisiae/genética , Peptídeos
2.
J Biol Chem ; 294(33): 12483-12494, 2019 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-31248982

RESUMO

Protein tyrosine phosphatase, nonreceptor type 2 (PTPN2) is mainly expressed in hematopoietic cells, where it negatively regulates growth factor and cytokine signaling. PTPN2 is an important regulator of hematopoiesis and immune/inflammatory responses, as evidenced by loss-of-function mutations of PTPN2 in leukemia and lymphoma and knockout mice studies. Benzene is an environmental chemical that causes hematological malignancies, and its hematotoxicity arises from its bioactivation in the bone marrow to electrophilic metabolites, notably 1,4-benzoquinone, a major hematotoxic benzene metabolite. Although the molecular bases for benzene-induced leukemia are not well-understood, it has been suggested that benzene metabolites alter topoisomerases II function and thereby significantly contribute to leukemogenesis. However, several studies indicate that benzene and its hematotoxic metabolites may also promote the leukemogenic process by reacting with other targets and pathways. Interestingly, alterations of cell-signaling pathways, such as Janus kinase (JAK)/signal transducer and activator of transcription (STAT), have been proposed to contribute to benzene-induced malignant blood diseases. We show here that 1,4-benzoquinone directly impairs PTPN2 activity. Mechanistic and kinetic experiments with purified human PTPN2 indicated that this impairment results from the irreversible formation (kinact = 645 m-1·s-1) of a covalent 1,4-benzoquinone adduct at the catalytic cysteine residue of the enzyme. Accordingly, cell experiments revealed that 1,4-benzoquinone exposure irreversibly inhibits cellular PTPN2 and concomitantly increases tyrosine phosphorylation of STAT1 and expression of STAT1-regulated genes. Our results provide molecular and cellular evidence that 1,4-benzoquinone covalently modifies key signaling enzymes, implicating it in benzene-induced malignant blood diseases.


Assuntos
Benzeno , Benzoquinonas/metabolismo , Leucemia , Proteínas de Neoplasias , Proteína Tirosina Fosfatase não Receptora Tipo 2 , Fator de Transcrição STAT1 , Transdução de Sinais/efeitos dos fármacos , Benzeno/farmacocinética , Benzeno/farmacologia , Células HEK293 , Humanos , Células Jurkat , Leucemia/genética , Leucemia/metabolismo , Leucemia/patologia , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 2/antagonistas & inibidores , Proteína Tirosina Fosfatase não Receptora Tipo 2/genética , Proteína Tirosina Fosfatase não Receptora Tipo 2/metabolismo , Fator de Transcrição STAT1/genética , Fator de Transcrição STAT1/metabolismo , Transdução de Sinais/genética
3.
BMC Genomics ; 20(1): 109, 2019 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-30727955

RESUMO

BACKGROUND: Colonization of deep-sea hydrothermal vents by most invertebrates was made efficient through their adaptation to a symbiotic lifestyle with chemosynthetic bacteria, the primary producers in these ecosystems. Anatomical adaptations such as the establishment of specialized cells or organs have been evidenced in numerous deep-sea invertebrates. However, very few studies detailed global inter-dependencies between host and symbionts in these ecosystems. In this study, we proposed to describe, using a proteo-transcriptomic approach, the effects of symbionts loss on the deep-sea mussel Bathymodiolus azoricus' molecular biology. We induced an in situ depletion of symbionts and compared the proteo-transcriptome of the gills of mussels in three conditions: symbiotic mussels (natural population), symbiont-depleted mussels and aposymbiotic mussels. RESULTS: Global proteomic and transcriptomic results evidenced a global disruption of host machinery in aposymbiotic organisms. We observed that the total number of proteins identified decreased from 1118 in symbiotic mussels to 790 in partially depleted mussels and 761 in aposymbiotic mussels. Using microarrays we identified 4300 transcripts differentially expressed between symbiont-depleted and symbiotic mussels. Among these transcripts, 799 were found differentially expressed in aposymbiotic mussels and almost twice as many in symbiont-depleted mussels as compared to symbiotic mussels. Regarding apoptotic and immune system processes - known to be largely involved in symbiotic interactions - an overall up-regulation of associated proteins and transcripts was observed in symbiont-depleted mussels. CONCLUSION: Overall, our study showed a global impairment of host machinery and an activation of both the immune and apoptotic system following symbiont-depletion. One of the main assumptions is the involvement of symbiotic bacteria in the inhibition and regulation of immune and apoptotic systems. As such, symbiotic bacteria may increase their lifespan in gill cells while managing the defense of the holobiont against putative pathogens.


Assuntos
Bactérias/metabolismo , Crescimento Quimioautotrófico , Regulação da Expressão Gênica , Mytilidae/microbiologia , Simbiose , Animais , Perfilação da Expressão Gênica , Brânquias/microbiologia , Fontes Hidrotermais , Microbiota , Mytilidae/genética , Proteômica
4.
J Biol Chem ; 292(5): 1603-1612, 2017 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-27965358

RESUMO

Dithiocarbamates (DTCs) are important industrial chemicals used extensively as pesticides and in a variety of therapeutic applications. However, they have also been associated with neurotoxic effects and in particular with the development of Parkinson-like neuropathy. Although different pathways and enzymes (such as ubiquitin ligases or the proteasome) have been identified as potential targets of DTCs in the brain, the molecular mechanisms underlying their neurotoxicity remain poorly understood. There is increasing evidence that alteration of glycogen metabolism in the brain contributes to neurodegenerative processes. Interestingly, recent studies with N,N-diethyldithiocarbamate suggest that brain glycogen phosphorylase (bGP) and glycogen metabolism could be altered by DTCs. Here, we provide molecular and mechanistic evidence that bGP is a target of DTCs. To examine this system, we first tested thiram, a DTC pesticide known to display neurotoxic effects, observing that it can react rapidly with bGP and readily inhibits its glycogenolytic activity (kinact = 1.4 × 105 m-1 s-1). Using cysteine chemical labeling, mass spectrometry, and site-directed mutagenesis approaches, we show that thiram (and certain of its metabolites) alters the activity of bGP through the formation of an intramolecular disulfide bond (Cys318-Cys326), known to act as a redox switch that precludes the allosteric activation of bGP by AMP. Given the key role of glycogen metabolism in brain functions and neurodegeneration, impairment of the glycogenolytic activity of bGP by DTCs such as thiram may be a new mechanism by which certain DTCs exert their neurotoxic effects.


Assuntos
Glicogênio Fosforilase Encefálica/química , Neurotoxinas/química , Tiocarbamatos/química , Glicogênio/metabolismo , Glicogênio Fosforilase Encefálica/genética , Glicogênio Fosforilase Encefálica/metabolismo , Humanos , Doenças Neurodegenerativas/induzido quimicamente , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/metabolismo , Síndromes Neurotóxicas/genética , Síndromes Neurotóxicas/metabolismo , Neurotoxinas/toxicidade , Tiocarbamatos/toxicidade
5.
J Biol Chem ; 291(46): 23842-23853, 2016 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-27660393

RESUMO

Brain glycogen and its metabolism are increasingly recognized as major players in brain functions. Moreover, alteration of glycogen metabolism in the brain contributes to neurodegenerative processes. In the brain, both muscle and brain glycogen phosphorylase isozymes regulate glycogen mobilization. However, given their distinct regulatory features, these two isozymes could confer distinct metabolic functions of glycogen in brain. Interestingly, recent proteomics studies have identified isozyme-specific reactive cysteine residues in brain glycogen phosphorylase (bGP). In this study, we show that the activity of human bGP is redox-regulated through the formation of a disulfide bond involving a highly reactive cysteine unique to the bGP isozyme. We found that this disulfide bond acts as a redox switch that precludes the allosteric activation of the enzyme by AMP without affecting its activation by phosphorylation. This unique regulatory feature of bGP sheds new light on the isoform-specific regulation of glycogen phosphorylase and glycogen metabolism.


Assuntos
Dissulfetos/química , Glicogênio Fosforilase Encefálica/química , Monofosfato de Adenosina/química , Monofosfato de Adenosina/metabolismo , Regulação Alostérica/fisiologia , Animais , Cisteína/química , Cisteína/genética , Cisteína/metabolismo , Dissulfetos/metabolismo , Glicogênio/química , Glicogênio/metabolismo , Glicogênio Fosforilase Encefálica/genética , Glicogênio Fosforilase Encefálica/metabolismo , Humanos , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Oxirredução , Fosforilação/fisiologia , Coelhos , Ratos
6.
J Cereb Blood Flow Metab ; 36(1): 143-57, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25853907

RESUMO

The term matrisome refers to the ensemble of proteins constituting the extracellular matrix (ECM) (core matrisome) as well as the proteins associated with the ECM. Every organ has an ECM with a unique composition that not only provides the support and anchorage for cells, but also controls fundamental cellular processes as diverse as differentiation, survival, proliferation, and polarity. The current knowledge of the matrisome of small brain vessels is reviewed with a focus on the basement membrane (BM), a specialized form of ECM located at the interface between endothelial cells, contractile cells (smooth muscle cells and pericytes), and astrocyte endfeet­a very strategic location in the communication pathway between the cerebral microcirculation and astrocytes. We discuss some of the most recent genetic data and relevant findings from experimental models of nonamyloid cerebral small vessel disease (SVD). We propose the concept that perturbations of the cerebrovascular matrisome is a convergent pathologic pathway in monogenic forms of SVD, and is likely relevant to the sporadic disease.


Assuntos
Encéfalo/irrigação sanguínea , Doenças de Pequenos Vasos Cerebrais/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Matriz Extracelular/metabolismo , Microvasos/metabolismo , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Doenças de Pequenos Vasos Cerebrais/genética , Doenças de Pequenos Vasos Cerebrais/patologia , Matriz Extracelular/genética , Proteínas da Matriz Extracelular/genética , Humanos , Microvasos/patologia , Mutação
7.
Ann Biol Clin (Paris) ; 73(6): 690-704, 2015.
Artigo em Francês | MEDLINE | ID: mdl-26635049

RESUMO

Peanut, soybean, sesame and lentil are members of legumes worldwide consumed by human that can induce food allergy in genetically predisposed individuals. Several protein allergens, mainly water-soluble, have been described. We studied the non water-soluble fraction from these 4 food sources using immunoproteomics tools and techniques. Flour extracts were solubilized in detergent and chaotropes and analysed in 1 and 2 dimensional gel electrophoresis (2D). Results showed numerous proteins exhibiting wide ranges of isoelectric points and relative molecular masses. When IgE immunoreactivities of 18 food allergy patients were individually tested in 1 and 2D western-blots, a very diversified IgE repertoire was observed, reflecting extensive cross-reactivities but also co-sensitizations. Besides already well known and characterized allergens, mass spectrometry analysis allowed the identification of 22 allergens undescribed until now: 10 in peanut, 2 in soybean, 3 in sesame and 7 in lentil. Three allergens are legume storage proteins and the others belong to transport proteins, nucleotide binding proteins and proteins involved in the regulation of metabolism. Seven proteins are potentially similar to allergens described in plants and fungi and 11 are not related to any known allergen. Our results contribute to increase the repertoire of legume allergens that may improve the diagnosis, categorize patients and thus provide a better treatment of patients.


Assuntos
Alérgenos/isolamento & purificação , Arachis/metabolismo , Farinha , Glycine max/metabolismo , Lens (Planta)/metabolismo , Sesamum/metabolismo , Alérgenos/metabolismo , Arachis/imunologia , Hipersensibilidade Alimentar/imunologia , Hipersensibilidade Alimentar/metabolismo , Humanos , Lens (Planta)/imunologia , Proteínas de Plantas/imunologia , Proteínas de Plantas/isolamento & purificação , Proteínas de Plantas/metabolismo , Proteoma/imunologia , Proteoma/isolamento & purificação , Proteoma/metabolismo , Proteômica/métodos , Sesamum/imunologia , Solubilidade , Glycine max/imunologia , Água/química
8.
Proc Natl Acad Sci U S A ; 110(26): 10717-22, 2013 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-23749869

RESUMO

The Drosophila defense against pathogens largely relies on the activation of two signaling pathways: immune deficiency (IMD) and Toll. The IMD pathway is triggered mainly by Gram-negative bacteria, whereas the Toll pathway responds predominantly to Gram-positive bacteria and fungi. The activation of these pathways leads to the rapid induction of numerous NF-κB-induced immune response genes, including antimicrobial peptide genes. The IMD pathway shows significant similarities with the TNF receptor pathway. Recent evidence indicates that the IMD pathway is also activated in response to various noninfectious stimuli (i.e., inflammatory-like reactions). To gain a better understanding of the molecular machinery underlying the pleiotropic functions of this pathway, we first performed a comprehensive proteomics analysis to identify the proteins interacting with the 11 canonical members of the pathway initially identified by genetic studies. We identified 369 interacting proteins (corresponding to 291 genes) in heat-killed Escherichia coli-stimulated Drosophila S2 cells, 92% of which have human orthologs. A comparative analysis of gene ontology from fly or human gene annotation databases points to four significant common categories: (i) the NuA4, nucleosome acetyltransferase of H4, histone acetyltransferase complex, (ii) the switching defective/sucrose nonfermenting-type chromatin remodeling complex, (iii) transcription coactivator activity, and (iv) translation factor activity. Here we demonstrate that sumoylation of the IκB kinase homolog immune response-deficient 5 plays an important role in the induction of antimicrobial peptide genes through a highly conserved sumoylation consensus site during bacterial challenge. Taken together, the proteomics data presented here provide a unique avenue for a comparative functional analysis of proteins involved in innate immune reactions in flies and mammals.


Assuntos
Proteínas de Drosophila/imunologia , Drosophila/imunologia , Drosophila/microbiologia , Transdução de Sinais/imunologia , Sequência de Aminoácidos , Animais , Animais Geneticamente Modificados , Montagem e Desmontagem da Cromatina/genética , Montagem e Desmontagem da Cromatina/imunologia , Drosophila/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Escherichia coli/imunologia , Genes de Insetos , Histona Acetiltransferases/genética , Histona Acetiltransferases/imunologia , Histona Acetiltransferases/metabolismo , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Mapas de Interação de Proteínas , Homologia de Sequência de Aminoácidos
9.
Brain ; 136(Pt 6): 1830-45, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23649698

RESUMO

Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy, or CADASIL, one of the most common inherited small vessel diseases of the brain, is characterized by a progressive loss of vascular smooth muscle cells and extracellular matrix accumulation. The disease is caused by highly stereotyped mutations within the extracellular domain of the NOTCH3 receptor (Notch3(ECD)) that result in an odd number of cysteine residues. While CADASIL-associated NOTCH3 mutations differentially affect NOTCH3 receptor function and activity, they all are associated with early accumulation of Notch3(ECD)-containing aggregates in small vessels. We still lack mechanistic explanation to link NOTCH3 mutations with small vessel pathology. Herein, we hypothesized that excess Notch3(ECD) could recruit and sequester functionally important proteins within small vessels of the brain. We performed biochemical, nano-liquid chromatography-tandem mass spectrometry and immunohistochemical analyses, using cerebral and arterial tissue derived from patients with CADASIL and mouse models of CADASIL that exhibit vascular lesions in the end- and early-stage of the disease, respectively. Biochemical fractionation of brain and artery samples demonstrated that mutant Notch3(ECD) accumulates in disulphide cross-linked detergent-insoluble aggregates in mice and patients with CADASIL. Further proteomic and immunohistochemical analyses identified two functionally important extracellular matrix proteins, tissue inhibitor of metalloproteinases 3 (TIMP3) and vitronectin (VTN) that are sequestered into Notch3(ECD)-containing aggregates. Using cultured cells, we show that increased levels or aggregation of Notch3 enhances the formation of Notch3(ECD)-TIMP3 complex, promoting TIMP3 recruitment and accumulation. In turn, TIMP3 promotes complex formation including NOTCH3 and VTN. In vivo, brain vessels from mice and patients with CADASIL exhibit elevated levels of both insoluble cross-linked and soluble TIMP3 species. Moreover, reverse zymography assays show a significant elevation of TIMP3 activity in the brain vessels from mice and patients with CADASIL. Collectively, our findings lend support to a Notch3(ECD) cascade hypothesis in CADASIL disease pathology, which posits that aggregation/accumulation of Notch3(ECD) in the brain vessels is a central event, promoting the abnormal recruitment of functionally important extracellular matrix proteins that may ultimately cause multifactorial toxicity. Specifically, our results suggest a dysregulation of TIMP3 activity, which could contribute to mutant Notch3(ECD) toxicity by impairing extracellular matrix homeostasis in small vessels.


Assuntos
CADASIL/diagnóstico , CADASIL/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Receptores Notch/metabolismo , Inibidor Tecidual de Metaloproteinase-3/metabolismo , Idoso , Idoso de 80 Anos ou mais , Animais , CADASIL/genética , Células Cultivadas , Modelos Animais de Doenças , Proteínas da Matriz Extracelular/genética , Feminino , Homeostase/genética , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Pessoa de Meia-Idade , Transporte Proteico/genética , Receptor Notch3 , Receptores Notch/genética , Inibidor Tecidual de Metaloproteinase-3/genética
10.
Proteomes ; 1(2): 40-69, 2013 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-28250398

RESUMO

The finding of new diagnostic and prognostic markers of local radiation injury, and particularly of the cutaneous radiation syndrome, is crucial for its medical management, in the case of both accidental exposure and radiotherapy side effects. Especially, a fast high-throughput method is still needed for triage of people accidentally exposed to ionizing radiation. In this study, we investigated the impact of localized irradiation of the skin on the early alteration of the serum proteome of mice in an effort to discover markers associated with the exposure and severity of impending damage. Using two different large-scale quantitative proteomic approaches, 2D-DIGE-MS and SELDI-TOF-MS, we performed global analyses of serum proteins collected in the clinical latency phase (days 3 and 7) from non-irradiated and locally irradiated mice exposed to high doses of 20, 40 and 80 Gy which will develop respectively erythema, moist desquamation and necrosis. Unsupervised and supervised multivariate statistical analyses (principal component analysis, partial-least square discriminant analysis and Random Forest analysis) using 2D-DIGE quantitative protein data allowed us to discriminate early between non-irradiated and irradiated animals, and between uninjured/slightly injured animals and animals that will develop severe lesions. On the other hand, despite a high number of animal replicates, PLS-DA and Random Forest analyses of SELDI-TOF-MS data failed to reveal sets of MS peaks able to discriminate between the different groups of animals. Our results show that, unlike SELDI-TOF-MS, the 2D-DIGE approach remains a powerful and promising method for the discovery of sets of proteins that could be used for the development of clinical tests for triage and the prognosis of the severity of radiation-induced skin lesions. We propose a list of 15 proteins which constitutes a set of candidate proteins for triage and prognosis of skin lesion outcomes.

11.
Electrophoresis ; 33(3): 462-9, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22287175

RESUMO

Italian cypress (Cupressus sempervirens, Cups) pollen causes allergic diseases in inhabitants of many of the cities surrounding the Mediterranean basin. However, allergens of Cups pollen are still poorly known. We introduce here a novel proteomic approach based on double one-dimensional gel electrophoresis (D1-DE) as an alternative to the 2-DE immunoblot, for the specific IgE screening of allergenic proteins from pollen extracts. The sequential one-dimensional combination of IEF and SDS-PAGE associated with IgE immunoblotting allows a versatile multiplexed immunochemical analysis of selected groups of allergens by converting a single protein spot into an extended protein band. Moreover, the method appears to be valuable for MS/MS identification, without protein purification, of a new Cups pollen allergen at 43 kDa. D1-DE immunoblotting revealed that the prevalence of IgE sensitization to this allergen belonging to the polygalacturonase (PG) family was 70% in tested French allergic patients. In subsequent triple one-dimensional gel electrophoresis, the Cups pollen PG was shown to promote lectin-based protein-protein interactions. Therefore, D1-DE could be used in routine work as a convenient alternative to 2-DE immunoblotting for the simultaneous screening of allergenic components under identical experimental conditions, thereby saving considerable amounts of sera and allergen extracts.


Assuntos
Alérgenos/análise , Cupressus/química , Eletroforese em Gel de Poliacrilamida/métodos , Immunoblotting/métodos , Pólen/química , Alérgenos/química , Alérgenos/imunologia , Eletroforese em Gel Bidimensional , Humanos , Imunoglobulina E/sangue , Imunoglobulina E/imunologia , Focalização Isoelétrica , Pólen/imunologia , Proteômica/métodos , Rinite Alérgica Sazonal , Espectrometria de Massas em Tandem
12.
Rapid Commun Mass Spectrom ; 24(20): 3021-32, 2010 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-20872635

RESUMO

Peptide tagging is a useful tool to improve matrix-assisted laser desorption/ionization tandem mass spectrometric (MALDI-MS/MS) analysis. We present a new application of the use of the dansyl chloride (DNS-Cl). DNS-Cl is a specific primary amine reagent widely used in protein biochemistry. It adds a fluorescent dimethylaminonaphthalene moiety to the molecule. The evaluation of MALDI-MS and MS/MS analyses of dansylated peptides shows that dansylation raises the ionization efficiency of the most hydrophilic species compared with the most hydrophobic ones. Consequently, higher Mascot scores and protein sequence coverage are obtained by combining MS and MS/MS data of native and tagged samples. The N-terminal DNS-Cl sulfonation improves the peptide fragmentation and promotes the generation of b-fragments allowing better peptide sequencing. In addition, we set up a labeling protocol based on the microwave chemistry. Peptide dansylation proved to be a rapid and cheap method to improve the performance of liquid chromatography (LC)/MALDI-MS/MS analysis at the proteomic scale in terms of peptide detection and sequence coverage.


Assuntos
Cromatografia Líquida/métodos , Compostos de Dansil/química , Fragmentos de Peptídeos/análise , Proteoma/análise , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Espectrometria de Massas em Tandem/métodos , Sequência de Aminoácidos , Animais , Bradicinina/análise , Bradicinina/química , Bradicinina/metabolismo , Bovinos , Escherichia coli/enzimologia , Dados de Sequência Molecular , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Mapeamento de Peptídeos/métodos , Proteoma/química , Proteoma/metabolismo , Soroalbumina Bovina/análise , Soroalbumina Bovina/química , Soroalbumina Bovina/metabolismo , Tripsina/metabolismo
13.
Nucl Recept Signal ; 6: e007, 2008 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-18432312

RESUMO

The way in which estrogen receptor alpha (ERalpha) mediates gene transcription and hormone-dependent cancer cell proliferation is now being largely reconsidered in view of several recent discoveries. ERalpha-mediated transcription appears to be a cyclic and transient process where the proteasome - and thus receptor degradation - plays a pivotal role. In view of our recent investigations, which demonstrate the estrogenic activity of a synthetic peptide corresponding to a regulatory motif of the receptor (ERalpha17p), we propose that ERalpha proteasomal degradation could induce the emergence of regulatory peptide(s). The latter would function as a signal and contribute to the ERalpha activation process, amplifying the initial hormonal stimulation and giving rise to sustained estrogenic response.


Assuntos
Receptor alfa de Estrogênio/metabolismo , Estrogênios/metabolismo , Regulação da Expressão Gênica/fisiologia , Modelos Biológicos , Peptídeos/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Ativação Transcricional/fisiologia , Motivos de Aminoácidos , Animais , Receptor alfa de Estrogênio/química , Humanos
14.
J Steroid Biochem Mol Biol ; 109(1-2): 138-49, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18262408

RESUMO

As yet, estrogen receptor alpha (ERalpha) inhibitors used in clinical practice target a unique site, i.e. the hormone-binding pocket. With the aim of discovering other potential therapeutic targets in the receptor, we studied its AF-2a domain, a site that proves to be critical for ligand-independent ERalpha activity. Previous studies from our laboratory highlighted an auto-inhibitory action associated with a site included in this domain, i.e. the P295-T311 sequence. Accordingly, a deletion of this sequence produces a constitutively activated receptor mutant. More interestingly, a synthetic peptide with the P295-T311 sequence (ERalpha17p) elicits in breast cancer cell lines estrogenic responses that may be ascribed to a competitive mechanism towards the P295-T311-associated auto-inhibition of ERalpha. In the present study, we show that ERalpha17p sustains MCF-7 cell growth in estrogen-depleted culture medium by inducing molecular events promoting G1/S phase transition. We demonstrate, moreover, that this proliferative activity is associated with receptor down regulation (acceleration of ERalpha degradation and repression of ESR1 gene transcription), similar to that induced by estrogen agonists. Complementary studies suggest that our observations may be, at least in part, relevant to a competitive inhibition affecting ERalpha-Hsp70 association. Hence, the design of drugs able to stabilize ERalpha-Hsp70 complexes - where the receptor is in an inactive conformation - may be of therapeutic value.


Assuntos
Receptor alfa de Estrogênio/química , Receptor alfa de Estrogênio/metabolismo , Fragmentos de Peptídeos/farmacologia , Motivos de Aminoácidos , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Receptor alfa de Estrogênio/agonistas , Receptor alfa de Estrogênio/genética , Feminino , Proteínas de Choque Térmico HSP70/metabolismo , Humanos , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética
15.
J Mol Biol ; 372(4): 1009-1021, 2007 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-17689562

RESUMO

Muscle glycogen phosphorylase (GP) is a key enzyme in glucose metabolism, and its impairment can lead to muscle dysfunction. Tyrosine nitration of glycogen phosphorylase occurs during aging and has been suggested to be involved in progressive loss of muscle performance. Here, we show that GP (in its T and R form) is irreversibly impaired by exposure to peroxynitrite, a biological nitrogen species known to nitrate reactive tyrosine residues, and to be involved in physiological and pathological processes. Kinetic and biochemical analysis indicated that irreversible inactivation of GP by peroxynitrite is due to the fast (k(inact)=3 x 10(4) M(-1) s(-1)) nitration of a unique tyrosine residue of the enzyme. Endogenous GP was tyrosine nitrated and irreversibly inactivated in skeletal muscle cells upon exposure to peroxynitrite, with concomitant impairment of glycogen mobilization. Ligand protection assays and mass spectrometry analysis using purified GP suggested that the peroxynitrite-dependent inactivation of the enzyme could be due to the nitration of Tyr613, a key amino acid of the allosteric inhibitor site of the enzyme. Our findings suggest that GP functions may be regulated by tyrosine nitration.


Assuntos
Glicogênio Fosforilase Muscular , Músculo Esquelético/enzimologia , Ácido Peroxinitroso/química , Tirosina/química , Regulação Alostérica , Animais , Células Cultivadas , Relação Dose-Resposta a Droga , Glicogênio Fosforilase Muscular/química , Glicogênio Fosforilase Muscular/genética , Glicogênio Fosforilase Muscular/metabolismo , Camundongos , Modelos Moleculares , Molsidomina/análogos & derivados , Molsidomina/metabolismo , Fibras Musculares Esqueléticas/citologia , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/citologia , Músculo Esquelético/efeitos dos fármacos , Doadores de Óxido Nítrico/metabolismo , Ácido Peroxinitroso/farmacologia , Estrutura Terciária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA