Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Curr Issues Mol Biol ; 46(1): 244-261, 2023 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-38248319

RESUMO

Thirty percent of all mutations causing human disease generate mRNAs with premature termination codons (PTCs). Recognition and degradation of these PTC-containing mRNAs is carried out by the mechanism known as nonsense-mediated mRNA decay (NMD). Upf2 is a scaffold protein known to be a central component of the NMD surveillance pathway. It harbors three middle domains of eukaryotic initiation factor 4G (mIF4G-1, mIF4G-2, mIF4G-3) in its N-terminal region that are potentially important in regulating the surveillance pathway. In this study, we defined regions within the mIF4G-1 and mIF4G-2 that are required for proper function of Upf2p in NMD and translation termination in Saccharomyces cerevisiae. In addition, we narrowed down the activity of these regions to an aspartic acid (D59) in mIF4G-1 that is important for NMD activity and translation termination accuracy. Taken together, these studies suggest that inherently charged residues within mIF4G-1 of Upf2p play a role in the regulation of the NMD surveillance mechanism in S. cerevisiae.

2.
PLoS Pathog ; 18(9): e1010876, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36178969

RESUMO

The SARS-CoV-2 Delta Variant of Concern is highly transmissible and contains mutations that confer partial immune escape. The emergence of Delta in North America caused the first surge in COVID-19 cases after SARS-CoV-2 vaccines became widely available. To determine whether individuals infected despite vaccination might be capable of transmitting SARS-CoV-2, we compared RT-PCR cycle threshold (Ct) data from 20,431 test-positive anterior nasal swab specimens from fully vaccinated (n = 9,347) or unvaccinated (n = 11,084) individuals tested at a single commercial laboratory during the interval 28 June- 1 December 2021 when Delta variants were predominant. We observed no significant effect of vaccine status alone on Ct value, nor when controlling for vaccine product or sex. Testing a subset of low-Ct (<25) samples, we detected infectious virus at similar rates, and at similar titers, in specimens from vaccinated and unvaccinated individuals. These data indicate that vaccinated individuals infected with Delta variants are capable of shedding infectious SARS-CoV-2 and could play a role in spreading COVID-19.


Assuntos
COVID-19 , Vacinas Virais , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Humanos , SARS-CoV-2 , Vacinação
3.
Nat Commun ; 13(1): 3416, 2022 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-35701424

RESUMO

Transmission of influenza A viruses (IAV) between hosts is subject to numerous physical and biological barriers that impose genetic bottlenecks, constraining viral diversity and adaptation. The bottlenecks within hosts and their potential impacts on evolutionary pathways taken during infection are poorly understood. To address this, we created highly diverse IAV libraries bearing molecular barcodes on two gene segments, enabling high-resolution tracking and quantification of unique virus lineages within hosts. Here we show that IAV infection in lungs is characterized by multiple within-host bottlenecks that result in "islands" of infection in lung lobes, each with genetically distinct populations. We perform site-specific inoculation of barcoded IAV in the upper respiratory tract of ferrets and track viral diversity as infection spreads to the trachea and lungs. We detect extensive compartmentalization of discrete populations within lung lobes. Bottleneck events and localized replication stochastically sample individual viruses from the upper respiratory tract or the trachea that become the dominant genotype in a particular lobe. These populations are shaped strongly by founder effects, with limited evidence for positive selection. The segregated sites of replication highlight the jackpot-style events that contribute to within-host influenza virus evolution and may account for low rates of intrahost adaptation.


Assuntos
Vírus da Influenza A , Influenza Humana , Infecções por Orthomyxoviridae , Animais , Furões , Genótipo , Humanos , Vírus da Influenza A/genética , Replicação Viral/genética
4.
medRxiv ; 2021 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-33655260

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) control in the United States remains hampered, in part, by testing limitations. We evaluated a simple, outdoor, mobile, colorimetric reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay workflow where self-collected saliva is tested for SARS-CoV-2 RNA. From July 16 to November 19, 2020, 4,704 surveillance samples were collected from volunteers and tested for SARS-CoV-2 at 5 sites. A total of 21 samples tested positive for SARS-CoV-2 by RT-LAMP; 12 were confirmed positive by subsequent quantitative reverse-transcription polymerase chain reaction (qRT-PCR) testing, while 8 were negative for SARS-CoV-2 RNA, and 1 could not be confirmed because the donor did not consent to further molecular testing. We estimated the RT-LAMP assay's false-negative rate from July 16 to September 17, 2020 by pooling residual heat-inactivated saliva that was unambiguously negative by RT-LAMP into groups of 6 or less and testing for SARS-CoV-2 RNA by qRT-PCR. We observed a 98.8% concordance between the RT-LAMP and qRT-PCR assays, with only 5 of 421 RT-LAMP negative pools (2,493 samples) testing positive in the more sensitive qRT-PCR assay. Overall, we demonstrate a rapid testing method that can be implemented outside the traditional laboratory setting by individuals with basic molecular biology skills and can effectively identify asymptomatic individuals who would not typically meet the criteria for symptom-based testing modalities.

5.
J Biomol Tech ; 32(3): 137-147, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-35035293

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) control in the United States remains hampered, in part, by testing limitations. We evaluated a simple, outdoor, mobile, colorimetric reverse-transcription loop-mediated isothermal amplification (RT-LAMP) assay workflow where self-collected saliva is tested for SARS-CoV-2 RNA. From July 16, 2020, to November 19, 2020, surveillance samples (n = 4704) were collected from volunteers and tested for SARS-CoV-2 at 5 sites. Twenty-one samples tested positive for SARS-CoV-2 by RT-LAMP; 12 were confirmed positive by subsequent quantitative reverse-transcription polymerase chain reaction (qRT-PCR) testing, whereas 8 tested negative for SARS-CoV-2 RNA, and 1 could not be confirmed because the donor did not consent to further molecular testing. We estimated the false-negative rate of the RT-LAMP assay only from July 16, 2020, to September 17, 2020 by pooling residual heat-inactivated saliva that was unambiguously negative by RT-LAMP into groups of 6 or fewer and testing for SARS-CoV-2 RNA by qRT-PCR. We observed a 98.8% concordance between the RT-LAMP and qRT-PCR assays, with only 5 of 421 RT-LAMP-negative pools (2493 total samples) testing positive in the more-sensitive qRT-PCR assay. Overall, we demonstrate a rapid testing method that can be implemented outside the traditional laboratory setting by individuals with basic molecular biology skills and that can effectively identify asymptomatic individuals who would not typically meet the criteria for symptom-based testing modalities.


Assuntos
COVID-19 , SARS-CoV-2 , Teste para COVID-19 , Humanos , Técnicas de Diagnóstico Molecular , Técnicas de Amplificação de Ácido Nucleico , RNA Viral/genética , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA