Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Phytoremediation ; : 1-13, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38949066

RESUMO

Natural amino acids (NAA) have been rarely investigated as chelators, despite their ability to chelate heavy metals (HMs). In the present research, the effects of extracted natural amino acids, as a natural and environmentally friendly chelate agent and the inoculation of Pseudomonas fluorescens (PF) and Micrococcus yunnanensis (MY) bacteria were investigated on some responses of quinoa in a soil polluted with Pb, Ni, Cd, and Zn. Inoculation of PGPR bacteria enhanced plant growth and phytoremediation efficiency. Pb and Cd were higher in quinoa roots, while Ni and Zn were higher in the shoots. The highest efficiencies were observed with NAA treatment and simultaneous inoculation of PF and MY bacteria for Ni, Cd, Pb, and Zn. The highest values of phytoremediation efficiency and uptake efficiency of Ni, Cd, Pb, and Zn were 21.28, 19.11, 14.96 and 18.99 µg g-1, and 31.52, 60.78, 51.89, and 25.33 µg g-1, respectively. Results of present study well demonstrated NAA extracted from blood powder acted as strong chelate agent due to their diversity in size, solubilizing ability, abundant functional groups, and potential in the formation of stable complexes with Ni, Cd, Pb, and Zn, increasing metal availability in soil and improving phytoremediation efficiency in quinoa.


This study focused on an underexplored topic, the potential of natural amino acids (NAA) and plant growth-promoting rhizobacteria (PGPRs) to enhance phytoremediation efficiency of quinoa in a multi-metal contaminated soil with the waste recycling approach. Despite their chelating abilities, NAA have been rarely studied in this context. In the present study, the effects of extracted NAA, acting as environmentally friendly chelating agents, and the inoculation of Pseudomonas fluorescens (PF) and Micrococcus yunnanensis (MY) bacteria were examined on the responses of quinoa in a soil contaminated with Pb, Ni, Cd, and Zn.

2.
Environ Sci Pollut Res Int ; 31(27): 39602-39624, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38822962

RESUMO

Simultaneous application of modified Fe3O4 with biological treatments in remediating multi-metal polluted soils, has rarely been investigated. Thus, a pioneering approach towards sustainable environmental remediation strategies is crucial. In this study, we aimed to improve the efficiency of Fe3O4 as adsorbents for heavy metals (HMs) by applying protective coatings. We synthesized core-shell magnetite nanoparticles coated with modified nanocellulose, nanohydrochar, and nanobiochar, and investigated their effectiveness in conjunction with bacteria (Pseudomonas putida and Bacillus megaterium) for remediating a multi-metal contamination soil. The results showed that the coatings significantly enhanced the immobilization of heavy metals in the soil, even at low doses (0.5%). The coating of nanocellulose had the highest efficiency in stabilizing metals due to the greater variety of surface functional groups and higher specific surface area (63.86 m2 g-1) than the other two coatings. Interestingly, uncoated Fe3O4 had lower performance (113.6 m2 g-1) due to their susceptibility to deformation and oxidation. The use of bacteria as a biological treatment led to an increase in the stabilization of metals in soil. In fact, Pseudomonas putida and Bacillus megaterium increased immobilization of HMs in soil successfully because of extracellular polymeric substances and intensive negative charges. Analysis of metal concentrations in plants revealed that Ni and Zn accumulated in the roots, while Pb and Cd were transferred from the roots to the shoots. Treatment Fe3O4 coated with modified nanocellulose at rates of 0.5 and 1% along with Pseudomonas putida showed the highest effect in stabilizing metals. Application of coated Fe3O4 for in-situ immobilization of HMs in contamination soils is recommendable due to their high metal stabilization efficiency and suitability to apply in large quantities.


Assuntos
Nanopartículas de Magnetita , Metais Pesados , Poluentes do Solo , Poluentes do Solo/química , Nanopartículas de Magnetita/química , Solo/química , Pseudomonas putida , Bacillus megaterium , Recuperação e Remediação Ambiental/métodos , Adsorção
3.
Anal Methods ; 16(6): 919-929, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38258526

RESUMO

Compound-specific isotope analysis (CSIA) via gas chromatography-isotope ratio mass spectrometry (GC-IRMS) is a potent tool to elucidate the fate of (semi-)volatile organic contaminants in technical and environmental systems. Yet, due to the comparatively low sensitivity of IRMS, an enrichment step prior to analysis often is inevitable. A promising approach for fast as well as economic analyte extraction and preconcentration prior to CSIA is dispersive liquid-liquid microextraction (DLLME) - a well-established technique in concentration analysis of contaminants from aqueous samples. Here, we present and evaluate the first DLLME method for GC-IRMS exemplified by the analysis of chlorinated phenols (4-chlorophenol, 2,4-dichlorophenol, and 2,4,6-trichlorophenol) as model compounds. The analytes were simultaneously acetylated with acetic anhydride and extracted from the aqueous phase using a binary solvent mixture of acetone and tetrachloroethylene. With this method, reproducible δ13C values were achieved with errors ≤ 0.6‰ (n = 3) for aqueous concentrations down to 100 µg L-1. With preconcentration factors between 130 and 220, the method outperformed conventional liquid-liquid extraction in terms of sample preparation time and resource consumption with comparable reproducibility. Furthermore, we have demonstrated the suitability of the method (i) for the extraction of the analytes from a spiked river water sample and (ii) to quantify kinetic carbon isotope effect for 2,4,6-trichlorophenol during reduction with zero-valent zinc in a laboratory batch experiment. The presented work shows for the first time the potential of DLLME for analyte enrichment prior to CSIA and paves the way for further developments, such as the extraction of other compounds or scaling up to larger sample volumes.

4.
Environ Sci Technol ; 57(32): 11958-11966, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37515553

RESUMO

Aminopolyphosphonates (APPs) are strong chelating agents with growing use in industrial and household applications. In this study, we investigated the oxidation of the bisphosphonate iminodi(methylene phosphonate) (IDMP) - a major transformation product (TP) of numerous commercially used APPs and a potential precursor for aminomethylphosphonate (AMPA) - on manganese dioxide (MnO2). Transformation batch experiments at pH 6 revealed AMPA and phosphate as main TPs, with a phosphorus mass balance of 80 to 92% throughout all experiments. Our results suggest initial cleavage of the C-P bond and formation of the stable intermediate N-formyl-AMPA. Next, C-N bond cleavage leads to the formation of AMPA, which exhibits lower reactivity than IDMP. Reaction rates together with IDMP and Mn2+ sorption data indicate formation of IDMP-Mn2+ surface bridging complexes with progressing MnO2 reduction, leading to the passivation of the mineral surface regarding IDMP oxidation. Compound-specific stable carbon isotope analysis of IDMP in both sorbed and aqueous fractions further supported this hypothesis. Depending on the extent of Mn2+ surface concentration, the isotope data indicated either sorption of IDMP to the mineral surface or electron transfer from IDMP to MnIV to be the rate-limiting step of the overall reaction. Our study sheds further light on the complex surface processes during MnO2 redox reactions and reveals abiotic oxidative transformation of APPs by MnO2 as a potential process contributing to widespread elevated AMPA concentrations in the environment.


Assuntos
Organofosfonatos , Óxidos , Óxidos/química , Compostos de Manganês/química , Manganês/química , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico , Oxirredução , Minerais , Isótopos
5.
Environ Sci Technol ; 56(18): 12955-12964, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36049056

RESUMO

Glyphosate, an ionizable organic herbicide, is frequently detected in soils and groundwater globally despite its strong retention via sorption. Understanding its apparent mobility hinges on our ability to quantify its system-specific sorption behavior, hindered by its affinity to adsorb onto sediments, yielding very low aqueous concentrations. Here, we present findings from a saturated flow-through column experiment in which we monitored glyphosate sorption onto a natural calcareous aquifer sediment, using the noninvasive geophysical method spectral induced polarization (SIP). Our kinetic sorption reactive transport model predicted the strong nonlinear reversible retention of glyphosate and reproduced the spatial profile of retained glyphosate in the sediment, with a measured maximum of 0.06 mg g-1. The strong contribution of sorption to pore fluid conduction masked the expected variations in imaginary conductivity, σ″. However, time constants derived from a Cole-Cole model matched the timing and spatial distribution of model-predicted sorbed concentration changes, increasing from 0.8 × 10-3 to 1.7 × 10-3 s with an increase in sorbed glyphosate of 0.1 mg g-1. Thus, glyphosate sorption modified the surface charging properties of the sediment proportional to the solid-bound concentrations. Our findings link SIP signal variations to sorption dynamics and provide a framework for improved monitoring of charged organic contaminants in natural sediments.


Assuntos
Água Subterrânea , Herbicidas , Adsorção , Sedimentos Geológicos , Glicina/análogos & derivados , Cinética , Solo , Glifosato
6.
Rapid Commun Mass Spectrom ; 36(21): e9378, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-35975721

RESUMO

RATIONALE: The recent development of reliable GC/qMS methods for δ37 Cl compound-specific stable isotope analysis (CSIA) paves the way for dual carbon-chlorine isotope analysis of chlorinated ethenes and thus allows deeper insights into underlying transformation processes/mechanisms. A two-point calibration is indispensable for the precise and correct conversion of raw data to the international δ37 ClSMOC scale. The currently available calibration standards for tetrachloroethylene (PCE) span only a very narrow range from -2.52‰ (EIL2) to +0.29‰ (EIL1), which is considerably smaller than observed δ37 Cl isotope enrichment in (bio-)transformation studies (up to 12‰). METHODS: We describe the preparation and evaluation of a new 37 Cl-enriched PCE standard to avoid bias in δ37 Cl CSIA arising from extrapolation beyond the calibration range. The preparation comprised: (i) partial PCE reduction by zero-valent zinc in a system of PCE, ethanol (initial volume ratio 3/5) and trace amounts of water followed by (ii) liquid-liquid extraction and (iii) a subsequent fractional distillation to purify the 37 Cl-enriched PCE. RESULTS: The obtained PCE (PCEenriched ) showed a purity of 98.8% (mole fraction) and a δ37 ClSMOC value of +10.8 ± 0.5‰. The evaluation of an experimental dataset with and without extrapolation showed no significant variation. CONCLUSIONS: The new PCE standard (PCEenriched ) expands the calibration range to 13.3‰ (previously 2.8‰) and thus prevents potential bias introduced by extrapolation beyond the calibration range.


Assuntos
Tetracloroetileno , Calibragem , Isótopos de Carbono/análise , Cloro/análise , Etanol , Tetracloroetileno/análise , Água , Zinco
7.
Environ Sci Process Impacts ; 24(5): 825-838, 2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35485927

RESUMO

We present field data on the effects of heavy rainfall after drought on the mobility of glyphosate and redox conditions in a clayey floodplain soil. By applying glyphosate together with deuterated water as conservative tracer in combination with time resolved in situ redox potential measurements, the spatial and temporal patterns of water infiltration and pesticide transport as well as the concomitant changes of the redox conditions were revealed. Our findings demonstrate that shrinkage cracks in dry soils can serve as effective transport paths for atmospheric oxygen, water and glyphosate. The rain intensity of a typical summer storm event (approx. 25 mm within one hour) was sufficient to translocate deuterated water and glyphosate to the subsoil (50 cm) within 2 hours. Soil wetting induced partial closure of the shrinkage cracks and stimulated microbial activity resulting in pronounced dynamics of in situ soil redox conditions. Redox potentials in 40 to 50 cm depth dropped permanently to strongly reducing conditions within hours to days but fluctuated between reducing and oxidizing conditions in 10 to 30 cm depth. Our findings highlight the close link between the presence of macropores (shrinkage cracks), heavy rainfall after drought, redox dynamics and pesticide translocation to the subsoil and thus call for further studies addressing the effects of dynamic redox conditions as a limiting factor for glyphosate degradation.


Assuntos
Herbicidas , Poluentes do Solo , Secas , Glicina/análogos & derivados , Herbicidas/análise , Oxirredução , Solo , Poluentes do Solo/análise , Água , Glifosato
8.
Environ Sci Technol ; 56(7): 4091-4100, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35294177

RESUMO

Mn(II)-catalyzed oxidation by molecular oxygen is considered a relevant process for the environmental fate of aminopolyphosphonate chelating agents such as aminotrismethylene phosphonate (ATMP). However, the potential roles of Mn(III)ATMP-species in the underlying transformation mechanisms are not fully understood. We combined kinetic studies, compound-specific stable carbon isotope analysis, and equilibrium speciation modeling to shed light on the significance of such Mn-ATMP species for the overall ATMP oxidation by molecular oxygen. The fraction of ATMP complexed with Mn(II) inversely correlated with both (i) the Mn(II)-normalized transformation rate constants of ATMP and (ii) the observed carbon isotope enrichment factors (εc-values). These findings provide evidence for two parallel ATMP transformation pathways exhibiting distinctly different reaction kinetics and carbon isotope fractionation: (i) oxidation of ATMP present in Mn(III)ATMP complexes (εc ≈ -10 ‰) and (ii) oxidation of free ATMP by such Mn(III)ATMP species (εc ≈ -1 ‰) in a catalytic cycle. The higher reaction rate of the latter pathway implies that aminopolyphosphonates can be trapped in catalytic Mn-complexes before being transformed and suggests that Mn(III)ATMP might be a potent oxidant also for other reducible solutes in aqueous environments.


Assuntos
Organofosfonatos , Isótopos de Carbono , Catálise , Fracionamento Químico , AMP Cíclico/análogos & derivados , Cinética , Oxirredução
9.
Pest Manag Sci ; 78(6): 2550-2559, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35322519

RESUMO

BACKGROUND: Analytical constraints complicate environmental monitoring campaigns of the herbicide glyphosate and its major degradation product aminomethylphosphonic acid (AMPA): their strong sorption to soil minerals requires harsh extraction conditions. Coextracted matrix compounds impair downstream analysis and must be removed before analysis. RESULTS: A new extraction method combined with subsequent capillary electrophoresis-mass spectrometry for derivatization-free analysis of glyphosate and AMPA in soil and sediment was developed and applied to a suite of environmental samples. It was compared to three extraction methods from literature. We show that no extraction medium reaches 100% recovery. The new phosphate-supported alkaline extraction method revealed (1) high recoveries of 70-90% for soils and aquatic sediments, (2) limits of detections below 20 µg kg-1 , and (3) a high robustness, because impairing matrix components (trivalent cations and humic acids) were precipitated prior to the analysis. Soil and sediment samples collected around Tübingen, Germany, revealed maximum glyphosate and AMPA residues of 80 and 2100 µg kg-1 , respectively, with residues observed along a core of lake sediments. Glyphosate and/or AMPA were found in 40% of arable soils and 57% of aquatic sediment samples. CONCLUSION: In this work, we discuss soil parameters that influence (de)sorption and thus extraction. From our results we conclude that residues of glyphosate in environmental samples are easily underestimated. With its possible high throughput, the method presented here can resolve current limitations in monitoring campaigns of glyphosate by addressing soil and aquatic sediment samples with critical sorption characteristics.


Assuntos
Herbicidas , Poluentes do Solo , Monitoramento Ambiental , Glicina/análogos & derivados , Herbicidas/análise , Fosfatos/análise , Solo/química , Poluentes do Solo/análise , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/análise , Glifosato
10.
Trends Biotechnol ; 40(4): 377-380, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34776260

RESUMO

Geobatteries are redox-active substances that can take up, store, and release electrons reversibly. Provided that their redox activity can be maintained by fluctuations of oxidizing and reducing redox conditions, geobatteries could also improve the performance of engineered systems, such as in biological nitrogen removal from wastewater or constructed wetlands.


Assuntos
Desnitrificação , Nitrogênio , Eliminação de Resíduos Líquidos , Águas Residuárias , Áreas Alagadas
11.
Environ Sci Technol ; 54(17): 10646-10653, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32867481

RESUMO

The mechanism of long-distance electron transfer via redox-active particulate natural organic matter (NOM) is still unclear, especially considering its aggregated nature and the resulting low diffusivity of its quinone- and hydroquinone-containing molecules. Here we conducted microbial iron(III) mineral reduction experiments in which anthraquinone-2,6-disulfonate (AQDS, a widely used analogue for quinone- and hydroquinone-containing molecules in NOM) was immobilized in agar to achieve a spatial separation between the iron-reducing bacteria and ferrihydrite mineral. Immobilizing AQDS in agar also limited its diffusion, which resembled electron-transfer behavior of quinone- and hydroquinone-containing molecules in particulate NOM. We found that, although the diffusion coefficient of the immobilized AQDS/AH2QDS was 10 times lower in agar than in water, the iron(III) mineral reduction rate (1.60 ± 0.28 mmol L-1 Fe(II) d-1) was still comparable in both media, indicating the existence of another mechanism that accelerated the electron transfer under low diffusive conditions. We found the correlation between the heterogeneous electron-transfer rate constant (10-3 cm s-1) and the diffusion coefficient (10-7 cm2 s-1) fitting well with the "diffusion-electron hopping" model, suggesting that electron transfer via the immobilized AQDS/AH2QDS couple was accomplished through a combination of diffusion and electron hopping. Electron hopping increased the diffusion concentration gradient up to 106-fold, which largely promoted the overall electron-transfer rate during microbial iron(III) mineral reduction. Our results are helpful to explain the electron-transfer mechanisms in particulate NOM.


Assuntos
Compostos Férricos , Ferro , Antraquinonas , Elétrons , Hidroquinonas , Minerais , Oxirredução , Quinonas
12.
FEMS Microbiol Ecol ; 96(8)2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32602887

RESUMO

Biochar (BC) has been shown to influence microbial denitrification and mitigate soil N2O emissions. However, it is unclear if BC is able to directly stimulate the microbial reduction of N2O to N2. We hypothesized that the ability of BC to lower N2O emissions could be related not only to its ability to store electrons, but to donate them to bacteria that enzymatically reduce N2O. Therefore, we carried out anoxic incubations with Paracoccus denitrificans, known amounts of N2O, and nine contrasting BCs, in the absence of any other electron donor or acceptor. We found a strong and direct correlation between the extent and rates of N2O reduction with BC's EDC/EEC (electron donating capacity/electron exchange capacity). Apart from the redox capacity, other BC properties were found to regulate the BC's ability to increase N2O reduction by P. denitrificans. For this specific BC series, we found that a high H/C and ash content, low surface area and poor lignin feedstocks favored N2O reduction. This provides valuable information for producing tailored BCs with the potential to assist and promote the reduction of N2O in the pursuit of reducing this greenhouse gas emissions.


Assuntos
Paracoccus denitrificans , Carvão Vegetal , Desnitrificação , Elétrons , Óxido Nitroso/análise , Solo
13.
Anal Bioanal Chem ; 412(20): 4967-4983, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32524371

RESUMO

In this study, we developed and validated a CE-TOF-MS method for the quantification of glyphosate (N-(phosphonomethyl)glycine) and its major degradation product aminomethylphosphonic acid (AMPA) in different samples including beer, media from toxicological analysis with Daphnia magna, and sorption experiments. Using a background electrolyte (BGE) of very low pH, where glyphosate is still negatively charged but many matrix components become neutral or protonated, a very high separation selectivity was reached. The presence of inorganic salts in the sample was advantageous with regard to preconcentration via transient isotachophoresis. The advantages of our new method are the following: no derivatization is needed, high separation selectivity and thus matrix tolerance, speed of analysis, limits of detection suitable for many applications in food and environmental science, negligible disturbance by metal chelation. LODs for glyphosate were < 5 µg/L for both aqueous and beer samples, the linear range in aqueous samples was 5-3000 µg/L, for beer samples 10-3000 µg/L. For AMPA, LODs were 3.3 and 30.6 µg/L, and the linear range 10-3000 µg/L and 50-3000 µg/L, for aqueous and beer samples, respectively. Recoveries in beer samples for glyphosate were 94.3-110.7% and for AMPA 80.2-100.4%. We analyzed 12 German and 2 Danish beer samples. Quantification of glyphosate and AMPA was possible using isotopically labeled standards without enrichment, purification, or dilution, only degassing and filtration were required for sample preparation. Finally, we demonstrate the applicability of the method for other strong acids, relevant in food and environmental sciences such as N-acetyl glyphosate, N-acetyl AMPA (present in some glyphosate resistant crop), trifluoroacetic acid, 2-methyl-4-chlorophenoxyacetic acid, glufosinate and its degradation product 3-(methylphosphinico)propionic acid, oxamic acid, and others.


Assuntos
Cerveja/análise , Eletroforese Capilar/métodos , Poluentes Ambientais/análise , Glicina/análogos & derivados , Herbicidas/análise , Espectrometria de Massas/métodos , Glicina/análise , Limite de Detecção , Reprodutibilidade dos Testes , Espectrofotometria Ultravioleta , Glifosato
14.
Environ Sci Technol ; 54(7): 4131-4139, 2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32108470

RESUMO

Redox-active organic molecules such as anthraquinone-2,6-disulfonate (AQDS) and natural organic matter (NOM) can act as electron shuttles thus facilitating electron transfer from Fe(III)-reducing bacteria (FeRB) to terminal electron acceptors such as Fe(III) minerals. In this research, we examined the length scale over which this electron shuttling can occur. We present results from agar-solidified experimental incubations, containing either AQDS or NOM, where FeRB were physically separated from ferrihydrite or goethite by 2 cm. Iron speciation and concentration measurements coupled to a diffusion-reaction model highlighted clearly Fe(III) reduction in the presence of electron shuttles, independent of the type of FeRB. Based on our fitted model, the rate of ferrihydrite reduction increased from 0.07 to 0.19 µmol d-1 with a 10-fold increase in the AQDS concentration, highlighting a dependence of the reduction rate on the electron-shuttle concentration. To capture the kinetics of Fe(II) production, the effective AQDS diffusion coefficient had to be increased by a factor of 9.4. Thus, we postulate that the 2 cm electron transfer was enabled by a combination of AQDS molecular diffusion and an electron hopping contribution from reduced to oxidized AQDS molecules. Our results demonstrate that AQDS and NOM can drive microbial Fe(III) reduction across 2 cm distances and shed light on the electron transfer process in natural anoxic environments.


Assuntos
Antraquinonas , Compostos Férricos , Transporte de Elétrons , Ferro , Minerais , Oxirredução
15.
Environ Sci Technol ; 54(3): 1837-1847, 2020 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-31894976

RESUMO

Natural organic matter and humic substances (HS) in soils and sediments participate in numerous biogeochemical processes. Sorption to redox-inert aluminum oxide (Al2O3) was recently found to affect the redox properties of HS both in sorbed and dissolved state. With this study, we aim to decipher the molecular basis for these observations by applying Fourier transform ion cyclotron resonance mass spectrometry (FT-ICRMS) and mediated electrochemical analysis to Elliott soil, Pahokee peat, and Suwannee river humic acid (HA) samples before and after sorption to polar Al2O3 and a nonpolar sorbent (DAX-8 resin). The FT-ICRMS data provided evidence of preferential sorption of specific HA fractions, primarily tannin-like compounds, to Al2O3. These oxygen-rich compounds bear a high density of redox-active functional groups, and their adsorption leads to a depletion of electron exchange capacity in dissolved HAs and enrichment of HAs adsorbed at Al2O3. Sorption of HAs to DAX-8 was less selective and caused only slight changes in electron exchange capacities of dissolved and sorbed HA fractions. By combining FT-ICRMS and electrochemical approaches, our findings suggest that a selective sorption of oxygen-rich compounds in HA fractions to mineral oxides is a decisive factor for the different redox properties of dissolved and sorbed HA fractions.


Assuntos
Óxido de Alumínio , Substâncias Húmicas , Adsorção , Elétrons , Solo , Taninos
16.
Environ Sci Technol ; 54(3): 1593-1602, 2020 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-31880148

RESUMO

Kinetic isotope effects have been used successfully to prove and characterize organic contaminant transformation on various scales including field and laboratory studies. For tetrachloroethene (PCE) biotransformation, however, causes for the substantial variability of reported isotope enrichment factors (ε) are still not deciphered (εC = -0.4 to -19.0‰). Factors such as different reaction mechanisms and masking of isotope fractionation by either limited intracellular mass transfer or rate-limitations within the enzymatic multistep reaction are under discussion. This study evaluated the contribution of these factors to the magnitude of carbon and chlorine isotope fractionation of Desulfitobacterium strains harboring three different PCE-transforming enzymes (PCE-RdhA). Despite variable single element isotope fractionation (εC = -5.0 to -19.7‰; εCl = -1.9 to -6.3‰), similar slopes of dual element isotope plots (ΛC/Cl values of 2.4 ± 0.1 to 3.6 ± 0.1) suggest a common reaction mechanism for different PCE-RdhAs. Cell envelope properties of the Desulfitobacterium strains allowed to exclude masking effects due to PCE mass transfer limitation. Our results thus revealed that different rate-limiting steps (e.g., substrate channel diffusion) in the enzymatic multistep reactions of individual PCE-RdhAs rather than different reaction mechanisms determine the extent of PCE isotope fractionation in the Desulfitobacterium genus.


Assuntos
Desulfitobacterium , Tetracloroetileno , Tricloroetileno , Biodegradação Ambiental , Biotransformação , Isótopos de Carbono , Fracionamento Químico
17.
Anal Bioanal Chem ; 412(20): 4827-4835, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31813019

RESUMO

Compound-specific carbon isotope analysis (carbon CSIA) by liquid chromatography/isotope ratio mass spectrometry (LC-IRMS) is a novel and promising tool to elucidate the environmental fate of polar organic compounds such as polyphosphonates, strong complexing agents for di- and trivalent cations with growing commercial importance over the last decades. Here, we present a LC-IRMS method for the three widely used polyphosphonates 1-hydroxyethane 1,1-diphosphonate (HEDP), amino tris(methylenephosphonate) (ATMP), and ethylenediamine tetra(methylenephosphonate) (EDTMP). Separation of the analytes, as well as ATMP and its degradation products, was carried out on an anion exchange column under acidic conditions. Quantitative wet chemical oxidation inside the LC-IRMS interface to CO2 was achieved for all three investigated polyphosphonates at a comparatively low sodium persulfate concentration despite the described resilience of HEDP towards oxidative breakdown. The developed method has proven to be suitable for the determination of carbon isotope fractionation of ATMP transformation due to manganese-catalyzed reaction with molecular oxygen, as well as for equilibrium sorption of ATMP to goethite. A kinetic isotope effect was associated with the investigated reaction pathway, whereas no detectable isotope fractionation could be observed during sorption. Thus, CSIA is an appropriate technique to distinguish between sorption and degradation processes that contribute to a concentration decrease of ATMP in laboratory batch experiments. Our study highlights the potential of carbon CSIA by LC-IRMS to gain a process-based understanding of the fate of polyphosphonate complexing agents in environmental as well as technical systems.

18.
Sci Total Environ ; 703: 135515, 2020 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-31761354

RESUMO

Microbial Fe(III) reduction plays an important role for biogeochemical carbon and iron cycling in sediments and soils. Biochar is used as a soil amendment to increase fertility and lower N2O/CO2 emissions. It is redox-active and can stimulate microbial Fe(III) mineral reduction. It is currently unknown, however, how the aggregation of cells and Fe(III) minerals with biochar particles influence microbial Fe(III) reduction. Therefore, we determined rates and extent of ferrihydrite (Fh) reduction in S. oneidensis MR-1 cell suspensions with different particles sizes of wood-derived Swiss biochar and KonTiki biochar at different biochar/Fh ratios. We found that at small biochar particle size and high biochar/Fh ratios, the biochar, MR-1 cells and Fh closely aggregated, therefore addition of biochar stimulated electron transfer and microbial Fh reduction. In contrast, large biochar particles and low biochar/Fh ratios inhibited the electron transfer and Fe(III) reduction due to the lack of effective aggregation. These results suggest that for stimulating Fh reduction, a certain biochar particle size and biochar/Fh ratio is necessary leading to a close aggregation of all phases. This aggregation favors electron transfer from cells to Fh via redox cycling of the electron donating and accepting functional groups of biochar and via direct electron transfer through conductive biochar carbon matrices. These findings improve our understanding of electron transfer between microorganisms and Fe(III) minerals via redox-active biochar and help to evaluate the impact of biochar on electron transfer processes in the environment.


Assuntos
Carvão Vegetal/química , Compostos Férricos/metabolismo , Microbiologia do Solo , Elétrons , Ferro , Minerais , Oxirredução , Solo
19.
Anal Chem ; 92(1): 616-621, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31751112

RESUMO

Humic substances (HSs) are important electron acceptors and donors in soils and aquifers. The coupling of anoxic nitrogen (N) cycling to the function of HSs as a redox battery, however, remains poorly understood. Mediated electrochemical analysis is an emerging tool to determine the redox properties (i.e., electron donating capacity (EDC), electron accepting capacity (EAC), and redox state) of HS. However, the presence of nitrite (NO2-), a central intermediate of the N-cycle, interferes with the electrochemical determination of the EAC. To eliminate this interference, we developed a bioassay to remove nitrite in HS samples using the denitrifying bacterium Pseudomonas nitroreducens. Cell suspensions of P. nitroreducens completely removed NO2- at various concentrations (1, 2, and 5 mM) from humic acid samples (1 g HA/L) of different redox states. As P. nitroreducens is not able to exchange electrons with dissolved humic acids, the procedure allows an accurate and reliable determination of the EAC of humic acid samples. The proposed method thus opens new perspectives in biogeochemistry to study interactions between HSs and N cycling.


Assuntos
Técnicas Eletroquímicas , Elétrons , Substâncias Húmicas/análise , Nitritos/isolamento & purificação , Pseudomonas/química , Nitritos/química , Pseudomonas/citologia
20.
Environ Sci Technol ; 53(24): 14319-14328, 2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31742392

RESUMO

Natural organic matter (NOM) is an important redox-active component of natural porous media and predominantly occurs in the sorbed state. Nevertheless, the effects of NOM sorption at minerals on its redox properties are unknown and thus are the major objective of this study. We report how adsorption of three different humic acids (HAs) to redox-inert sorbents (polar Al2O3 and nonpolar DAX-8 resin) affects their electron-exchange capacities (EEC) and redox states. The electron-donating capacity of HAs sorbed at Al2O3 increased by up to 200%, whereas the EEC of the remaining dissolved HA fractions decreased compared with their initial properties. Sorption at DAX-8, however, did not affect significantly the EEC of HAs. We rationalize these results by (i) preferential sorption of NOM components rich in redox-active groups (e.g., quinone, polyphenols) and (ii) surface-catalyzed polymerization of polyphenolic compounds. Our results demonstrate that even in the absence of electron exchange with the sorbent, adsorption to polar mineral surfaces considerably affects the redox properties of NOM. Quantification of the redox state and EEC of adsorbed NOM is thus crucial for assessing electron-transfer processes as well as organic carbon stabilization and sequestration in soils and sediments.


Assuntos
Substâncias Húmicas , Solo , Adsorção , Minerais , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA