Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
3 Biotech ; 14(3): 93, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38433848

RESUMO

Factors, namely pH, laccase-like activity, dyes concentration as well as 1-Hydroxybenzotriazole (HBT) concentration was examined. The results indicated that the maximum decolorization yield and rate reached 98.30 ± 0.10% and 5.84 ± 0.01%/min, respectively for Sirius Blue, and 99.34 ± 0.47% and 5.85 ± 0.12%/min, respectively for Sirius Red after 4 h. The presence of the redox mediator 1-hydroxybenzotriazole (HBT) greatly improved the decolorization levels. The optimum concentrations of HBT, dyes, and laccase were 0.62 mM, 50 mg/L, and 0.89 U/mL respectively at pH 4.58 for both dyes. Phytotoxicity tests using treated and untreated dyes proved that the applied treatment slightly decreased the toxicity of the by-products. However, the germination index (GI) increased from 14.6 to 36.08% and from 31.6 to 36.96% for Sirius Red and Sirius Blue, respectively. The present study focused on the treatment of two recalcitrant azo dyes, namely: Sirius Blue (Direct Blue 71) and Sirius Red (Direct Red 80). The decolorization was performed using cell-free supernatant from Coriolopsis gallica culture with high laccase activity. Response surface methodology (RSM) and Box-Behnken design were applied to optimize the decolorization of the two tested dyes. The effect of four.

2.
Heliyon ; 10(1): e23588, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38187268

RESUMO

In this work, a novel enhanced model of the thermophysical characteristics of hybrid nanofluid is introduced. An innovative kind of fluid called hybrid nanofluid has been engineered to increase the heat transfer rate of heat and performance of thermal system. A growing trend in scientific and industrial applications pushed researchers to establish mathematical models for non-Newtonian fluids. A parametric study on theheat transfer and fluid flow of a Williamson hybrid nanofluid based on AA7075-AA7072/Methanol overincessantly moving thin needle under the porosity, Lorentz force, and non-uniform heat rise/fallis performed. Due to similarity variables, the partial differential equations governing the studied configuration undergo appropriate transformation to be converted into ordinary differential equations. The rigorous built-in numerical solver in bvp4c MATLAB has been employed to determine the numerical solutions of the established non-linear ordinary differential equations. It is worthy to note that velocity declines for both AA7075/Methanol nanofluid and AA7075- AA7072/Methanol hybrid nanofluid, but highervelocitymagnitudes occur for theAA7075/Methanol whilethe Williamson fluid parameters increased. It is alsoconcluded that as the porosity parameter isincreased, the flow intensity decreases gradually. It is worthy to note that for both non-uniform heat-rise and fall parameters, the temperature of the fluid gets stronger. Mounting valuesof needle thickness parameter leads to reduction in fluid speed and temperature. It is noticedthat as volume fractions of both types of nanoparticles are augmented then fluidvelocity and temperature amplify rapidly. A Comparison of current and published results is performed to ensure the validity of the established numerical model.

3.
Molecules ; 29(2)2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38257390

RESUMO

The textile industry produces high volumes of colored effluents that require multiple treatments to remove non-adsorbed dyes, which could be recalcitrant due to their complex chemical structure. Most of the studies have dealt with the biodegradation of mono or diazo dyes but rarely with poly-azo dyes. Therefore, the aim of this paper was to study the biodegradation of a four azo-bond dye (Sirius grey) and to optimize its decolorization conditions. Laccase-containing cell-free supernatant from the culture of a newly isolated fungal strain, Coriolopsis gallica strain BS9 was used in the presence of 1-hydroxybenzotriazol (HBT) to optimize the dye decolorization conditions. A Box-Benken design with four factors, namely pH, enzyme concentration, HBT concentration, and dye concentration, was performed to determine optimal conditions for the decolorization of Sirius grey. The optimal conditions were pH 5, 1 U/mL of laccase, 1 mM of HBT, and 50 mg/L of initial dye concentration, ensuring a decolorization yield and rate of 87.56% and 2.95%/min, respectively. The decolorized dye solution showed a decrease in its phytotoxicity (Germination index GI = 80%) compared to the non-treated solution (GI = 29%). This study suggests that the laccase-mediator system could be a promising alternative for dye removal from textile wastewater.


Assuntos
Compostos Azo , Lacase , Polyporaceae , Compostos Azo/toxicidade , Biodegradação Ambiental , Corantes/toxicidade , Poli A
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA