Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Eur J Cell Biol ; 89(5): 351-64, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20129698

RESUMO

Skeletal muscle differentiation is a complex process: It is characterised by changes in gene expression and protein composition. Simultaneously, a dramatic remodelling of the cytoskeleton and associated cell-matrix contacts, the costameres, occurs. The expression and localisation of the protein ponsin at cell-matrix contacts marks the establishment of costameres. In this report we show that skeletal muscle cells are characterised by a novel ponsin isoform, which contains a large insertion in its carboxy-terminus. This skeletal muscle-specific module binds the adapter proteins Nck1 and Nck2, and increased co-localisation of ponsin with Nck2 is observed at remodelling cell-matrix contacts of differentiating skeletal muscle cells. Since this ponsin insertion can be phosphorylated, it may adjust the interaction affinity with Nck adapter proteins. The novel ponsin isoform and its interaction with Nck1/2 provide exciting insight into the convergence of signalling pathways at the costameres, and its crucial role for skeletal muscle differentiation and re-generation.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Diferenciação Celular , Citoesqueleto/metabolismo , Proteínas dos Microfilamentos/metabolismo , Células Musculares/citologia , Células Musculares/metabolismo , Músculo Esquelético/citologia , Proteínas Oncogênicas/metabolismo , Sequência de Aminoácidos , Animais , Linhagem Celular , Humanos , Camundongos , Camundongos Endogâmicos mdx , Proteínas dos Microfilamentos/química , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Modelos Biológicos , Dados de Sequência Molecular , Células Musculares/enzimologia , Distrofia Muscular Animal/patologia , Mutagênese Insercional , Especificidade de Órgãos , Fosforilação , Fosfosserina , Fosfotreonina , Prolina/metabolismo , Ligação Proteica , Transporte Proteico , Análise de Sequência de Proteína , Especificidade por Substrato , Regulação para Cima/genética
2.
Anal Biochem ; 379(1): 73-9, 2008 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-18452698

RESUMO

The quantification of phosphate bound to the C6 and C3 positions of glucose residues in starch has received increasing interest since the importance of starch phosphorylation for plant metabolism was discovered. The method described here is based on the observation that the isobaric compounds glucose-6-phosphate (Glc6P) and glucose-3-phosphate (Glc3P) exhibit significantly different fragmentation patterns in negative ion electrospray tandem mass spectrometry (MS/MS). A simple experiment involving collision-induced dissociation (CID) MS(2) spectra of the sample and the two reference substances Glc3P and Glc6P permitted the quantification of the relative amounts of the two compounds in monosaccharide mixtures generated by acid hydrolysis of starch. The method was tested on well-characterized potato tuber starch. The results are consistent with those obtained by NMR analysis. In contrast to NMR, however, the presented method is fast and can be performed on less than 1 mg of starch. Starch samples of other origins exhibiting a variety of phosphorylation degrees were analyzed to assess the sensitivity and robustness of the method.


Assuntos
Glucose/análise , Amido/química , Espectrometria de Massas em Tandem/métodos , Glucose/química , Glucose-6-Fosfato/química , Glucofosfatos/química , Espectroscopia de Ressonância Magnética , Fosforilação
3.
Plant J ; 55(2): 323-34, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18419779

RESUMO

Starch phosphorylation by glucan, water dikinase (GWD; EC 2.7.9.4) is an essential step in the breakdown of native starch particles, but the underlying mechanisms have remained obscure. In this paper, the initial reactions of starch degradation were analyzed using crystallized maltodextrins as model carbohydrates. As revealed by X-ray diffraction analysis, the crystallized maltodextrins represent the B-type starch allomorph. Recombinant GWD phosphorylated crystalline maltodextrins with a high specific activity (55-60 nmol mg-1 protein min-1), but exhibited very little activity with the same maltodextrins that had been solubilized by heat treatment. Recombinant phosphoglucan, water dikinase (PWD; EC 2.7.9.5) utilized the crystalline maltodextrins only when pre-phosphorylated by GWD. Phosphorylation of crystalline maltodextrins, as catalyzed by GWD, initiated solubilization of neutral as well as phosphorylated glucans. In both the insoluble and the soluble state, mono-, di- and triphosphorylated alpha-glucans were observed, with wide and overlapping ranges of degree of polymerization. Thus, the substrate specificity of the GWD is defined by the physical arrangement of alpha-glucans rather than by structural parameters, such as the distribution of branching points or degree of polymerization. Unlike GWD and PWD, recombinant beta-amylase isozyme 3 (BAM3), which has been shown to be essential for plastidial starch degradation, preferentially degraded soluble maltodextrins rather than crystallized glucans. In summary, two conclusions were reached. Firstly, carbohydrate targets of GWD are primarily defined by the molecular order of glucan helices. Secondly, GWD-catalyzed phosphorylation mediates the phase transition of glucans from a highly ordered to a less ordered and hydrated state.


Assuntos
Fosfotransferases (Aceptores Pareados)/metabolismo , Polissacarídeos/metabolismo , Fosforilação , Proteínas de Plantas/metabolismo , Plantas/enzimologia , Polissacarídeos/química , Solubilidade , Amido/metabolismo , Especificidade por Substrato
4.
Eukaryot Cell ; 7(5): 872-80, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18310353

RESUMO

The nature of the cytoplasmic pathway of starch biosynthesis was investigated in the model heterotrophic dinoflagellate Crypthecodinium cohnii. The storage polysaccharide granules were shown to be composed of both amylose and amylopectin fractions with a chain length distribution and crystalline organization very similar to those of green algae and land plant starch. Preliminary characterization of the starch pathway demonstrated that C. cohnii contains multiple forms of soluble starch synthases and one major 110-kDa granule-bound starch synthase. All purified enzymes displayed a marked substrate preference for UDP-glucose. At variance with most other microorganisms, the accumulation of starch in the dinoflagellate occurs during early and mid-log phase, with little or no synthesis witnessed when approaching stationary phase. In order to establish a genetic system allowing the study of cytoplasmic starch metabolism in eukaryotes, we describe the isolation of marker mutations and the successful selection of random recombinant populations after homothallic crosses.


Assuntos
Citoplasma/metabolismo , Dinoflagellida/genética , Dinoflagellida/metabolismo , Modelos Genéticos , Amido/metabolismo , Proteínas de Algas/análise , Proteínas de Algas/metabolismo , Animais , Cruzamentos Genéticos , Dinoflagellida/enzimologia , Dinoflagellida/crescimento & desenvolvimento , Processos Heterotróficos , Mutagênese , Proteínas de Protozoários/análise , Proteínas de Protozoários/metabolismo , Recombinação Genética , Amido/isolamento & purificação , Amido/ultraestrutura , Amido Fosforilase/análise , Amido Fosforilase/metabolismo , Sintase do Amido/análise , Sintase do Amido/metabolismo , Uridina Difosfato Glucose/metabolismo
5.
Mol Biol Evol ; 25(3): 536-48, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18093994

RESUMO

Eukaryotic cells are composed of a variety of membrane-bound organelles that are thought to derive from symbiotic associations involving bacteria, archaea, or other eukaryotes. In addition to acquiring the plastid, all Archaeplastida and some of their endosymbiotic derivatives can be distinguished from other organisms by the fact that they accumulate starch, a semicrystalline-storage polysaccharide distantly related to glycogen and never found elsewhere. We now provide the first evidence for the existence of starch in a particular species of single-cell diazotrophic cyanobacterium. We provide evidence for the existence in the eukaryotic host cell at the time of primary endosymbiosis of an uridine diphosphoglucose (UDP-glucose)-based pathway similar to that characterized in amoebas. Because of the monophyletic origin of plants, we can define the genetic makeup of the Archaeplastida ancestor with respect to storage polysaccharide metabolism. The most likely enzyme-partitioning scenario between the plastid's ancestor and its eukaryotic host immediately suggests the precise nature of the ancient metabolic symbiotic relationship. The latter consisted in the export of adenosine diphosphoglucose (ADP-glucose) from the cyanobiont in exchange for the import of reduced nitrogen from the host. We further speculate that the monophyletic origin of plastids may lie in an organism with close relatedness to present-day group V cyanobacteria.


Assuntos
Cianobactérias/genética , Filogenia , Plantas/metabolismo , Amido/metabolismo , Simbiose/fisiologia , Adenosina Difosfato Glucose/metabolismo , Evolução Biológica , Compartimento Celular/genética , Compartimento Celular/fisiologia , Cianobactérias/metabolismo , Glucose/metabolismo , Nitrogênio/metabolismo , Plantas/genética , Simbiose/genética , Uridina Difosfato Glucose/metabolismo
6.
Eukaryot Cell ; 7(2): 247-57, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18055913

RESUMO

The nature of the cytoplasmic pathway of starch biosynthesis was investigated in the model glaucophyte Cyanophora paradoxa. The storage polysaccharide granules are shown to be composed of both amylose and amylopectin fractions, with a chain length distribution and crystalline organization similar to those of green algae and land plant starch. A preliminary characterization of the starch pathway demonstrates that Cyanophora paradoxa contains several UDP-glucose-utilizing soluble starch synthase activities related to those of the Rhodophyceae. In addition, Cyanophora paradoxa synthesizes amylose with a granule-bound starch synthase displaying a preference for UDP-glucose. A debranching enzyme of isoamylase specificity and multiple starch phosphorylases also are evidenced in the model glaucophyte. The picture emerging from our biochemical and molecular characterizations consists of the presence of a UDP-glucose-based pathway similar to that recently proposed for the red algae, the cryptophytes, and the alveolates. The correlative presence of isoamylase and starch among photosynthetic eukaryotes is discussed.


Assuntos
Cyanophora/metabolismo , Citosol/metabolismo , Modelos Biológicos , Amido Fosforilase/metabolismo , Sintase do Amido/metabolismo , Amido/metabolismo , Uridina Difosfato Glucose/metabolismo , Amilopectina/metabolismo , Clonagem Molecular , Cyanophora/ultraestrutura , DNA Complementar/genética , Isoamilase/metabolismo , Filogenia , Amido/química , Amido Fosforilase/química , Sintase do Amido/química
7.
Anal Chem ; 79(15): 5557-66, 2007 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-17595055

RESUMO

Heterochitooligosaccharides possess interesting biological properties. Isobaric mixtures of such linear heterochitooligosaccharides can be obtained by chemical or enzymatic degradation of chitosan. However, the separation of such mixtures is a challenging analytical problem which is so far unresolved. It is shown that these isobaric mixtures can be sequenced and quantified simultaneously using standard derivatization and multistage tandem mass spectrometric techniques. A linear ion trap mass spectrometer equipped with a vacuum matrix-assisted laser desorption ionization (vMALDI) source is used to perform MS2 as well as MS3 experiments.


Assuntos
Quitosana/análise , Oligossacarídeos/análise , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Sequência de Carboidratos , Cátions/química , Quitosana/análogos & derivados , Cromatografia por Troca Iônica/métodos , Dados de Sequência Molecular , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
8.
Artigo em Inglês | MEDLINE | ID: mdl-20483288

RESUMO

Although humans and their closest relative, the chimpanzee are 98.5% identical in their DNA sequences, they differ in morphologic, behavioural and cognitive aspects. Recent studies imply observed differences in transthyretin (TTR) as a unique feature in human evolution. We studied differences in the molecular heterogeneity of plasma TTR between humans and great apes (chimpanzee, bonobo, gorilla, orang-utan) using a mass spectrometry immunoassay. Compared to humans, TTR levels were higher in chimpanzees and lower in orang-utans (both P<0.05). In all species, four major mass signals were observed. In humans, mass signals were at 13,755+/-4, 13,875+/-4 (greatest intensity), 13,935+/-8 and 14,053+/-10 Da representing native, S-cysteinylated, S-cysteinglycinylated and glutathionylated TTR, respectively. In chimpanzees and bonobos molecular masses were slightly lower than in humans (7-8 Da), whilst in gorillas and orang-utans masses of TTR adducts were respectively 20 and 100 Da lower (P<0.05). Peak pattern and relationship to each other was similar in all species. The close relationship between humans and chimpanzees is reflected in the similarity of their post-translational modification of TTR whilst mutations on the amino acid level are indicated. Results represent a proteomic distinction between humans and great apes with the possibility of resulting functional consequences.

9.
Biomark Insights ; 2: 299-306, 2007 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-19662213

RESUMO

Transthyretin (TTR) which exists in various isoforms, is a valid marker for acute phase response and subclinical malnutrition. The aim of the study was to investigate the relationship between inflammation, oxidative stress and the occurrence of changes in microheterogeneity of TTR.A prospective, observational study at a level-I trauma center of a large urban medical university was performed. Patients were severely injured (n = 18; injury severity score (ISS): 34-66), and were observed within the first 24 hours of admittance and over the following days until day 20 after injury. 20 healthy subjects, matched by age and sex, were used as controls.TTR was enriched by immunoprecipitation. Microheterogeneity of TTR was determined by linear matrix assisted laser desorption/ionization-time of flight-mass spectrometry (MALDI-TOF-MS). Four major mass signals were observed for TTR representing native, S-cysteinylated, S-cysteinglycinylated and S-glutathionylated TTR. In the course of their ICU stay, 14 of the 18 patients showed a transient change in microheterogeneity in favour of the S-cysteinglycinylated form of TTR (p < 0.05 vs. controls). The occurrence of this variant was not associated with the severity of trauma or the intensity of the acute-phase response, but was associated with oxidative stress as evidenced by Trolox.Our results demonstrate that changes in microheterogeneity of TTR occur in a substantial number of ICU trauma patients. The diagnostic values of these changes remains to be elucidated. It is speculated that TTR modification may well be the mechanism underlying the morphological manifestation of amyloidose or Alzheimer's diseases in patients surviving multiple trauma.

10.
Plant J ; 48(2): 274-85, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17018036

RESUMO

Among the three distinct starch phosphorylase activities detected in Chlamydomonas reinhardtii, two distinct plastidial enzymes (PhoA and PhoB) are documented while a single extraplastidial form (PhoC) displays a higher affinity for glycogen as in vascular plants. The two plastidial phosphorylases are shown to function as homodimers containing two 91-kDa (PhoA) subunits and two 110-kDa (PhoB) subunits. Both lack the typical 80-amino-acid insertion found in the higher plant plastidial forms. PhoB is exquisitely sensitive to inhibition by ADP-glucose and has a low affinity for malto-oligosaccharides. PhoA is more similar to the higher plant plastidial phosphorylases: it is moderately sensitive to ADP-glucose inhibition and has a high affinity for unbranched malto-oligosaccharides. Molecular analysis establishes that STA4 encodes PhoB. Chlamydomonas reinhardtii strains carrying mutations at the STA4 locus display a significant decrease in amounts of starch during storage that correlates with the accumulation of abnormally shaped granules containing a modified amylopectin structure and a high amylose content. The wild-type phenotype could be rescued by reintroduction of the cloned wild-type genomic DNA, thereby demonstrating the involvement of phosphorylase in storage starch synthesis.


Assuntos
Proteínas de Algas/fisiologia , Chlamydomonas reinhardtii/enzimologia , Fosforilases/fisiologia , Amido/biossíntese , Proteínas de Algas/genética , Proteínas de Algas/metabolismo , Amilopectina/química , Amilopectina/metabolismo , Amilose/metabolismo , Animais , Chlamydomonas reinhardtii/genética , Teste de Complementação Genética , Isoenzimas/análise , Isoenzimas/genética , Isoenzimas/metabolismo , Cinética , Microscopia Eletrônica de Varredura , Mutação , Nitrogênio/metabolismo , Fosforilases/genética , Fosforilases/metabolismo , Amido/ultraestrutura
11.
FEBS Lett ; 580(20): 4872-6, 2006 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-16914145

RESUMO

Glucan, water dikinase (GWD) and phosphoglucan, water dikinase (PWD) are required for normal starch metabolism. We analysed starch phosphorylation in Arabidopsis wild-type plants and mutants lacking either GWD or PWD using (31)P NMR. Phosphorylation at both C6- and C3-positions of glucose moieties in starch was drastically decreased in GWD-deficient mutants. In starch from PWD-deficient plants C3-bound phosphate was reduced to levels close to the detection limit. The latter result contrasts with previous reports according to which GWD phosphorylates both C6- and C3-positions. In these studies, phosphorylation had been analysed by HPLC of acid-hydrolysed glucans. We now show that maltose-6-phosphate, a product of incomplete starch hydrolysis, co-eluted with glucose-3-phosphate under the chromatographic conditions applied. Re-examination of the specificity of the dikinases using an improved method demonstrates that C6- and C3-phosphorylation is selectively catalysed by GWD and PWD, respectively.


Assuntos
Proteínas de Arabidopsis/metabolismo , Glucanos/metabolismo , Glucose/metabolismo , Fosfotransferases (Aceptores Pareados)/metabolismo , Amido/metabolismo , Proteínas de Arabidopsis/genética , Glucanos/química , Glucose/química , Ressonância Magnética Nuclear Biomolecular , Fosforilação , Fosfotransferases (Aceptores Pareados)/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Amido/química
12.
Eukaryot Cell ; 5(6): 954-63, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16757743

RESUMO

The nature of the periplastidial pathway of starch biosynthesis was investigated with the model cryptophyte Guillardia theta. The storage polysaccharide granules were shown to be composed of both amylose and amylopectin fractions with a chain length distribution and crystalline organization very similar to those of starch from green algae and land plants. Most starch granules displayed a shape consistent with biosynthesis occurring around the pyrenoid through the rhodoplast membranes. A protein with significant similarity to the amylose-synthesizing granule-bound starch synthase 1 from green plants was found as the major polypeptide bound to the polysaccharide matrix. N-terminal sequencing of the mature protein proved that the precursor protein carries a nonfunctional transit peptide in its bipartite topogenic signal sequence which is cleaved without yielding transport of the enzyme across the two inner plastid membranes. The enzyme was shown to display similar affinities for ADP and UDP-glucose, while the V(max) measured with UDP-glucose was twofold higher. The granule-bound starch synthase from Guillardia theta was demonstrated to be responsible for the synthesis of long glucan chains and therefore to be the functional equivalent of the amylose-synthesizing enzyme of green plants. Preliminary characterization of the starch pathway suggests that Guillardia theta utilizes a UDP-glucose-based pathway to synthesize starch.


Assuntos
Criptófitas/metabolismo , Sintase do Amido/metabolismo , Amido/biossíntese , Sequência de Aminoácidos , Amilopectina/metabolismo , Amilose/metabolismo , Criptófitas/ultraestrutura , Grânulos Citoplasmáticos/química , Grânulos Citoplasmáticos/ultraestrutura , Glucosiltransferases/metabolismo , Dados de Sequência Molecular , Filogenia , Plastídeos/química , Amido/química , Sintase do Amido/química
13.
Glycobiology ; 16(5): 402-14, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16449348

RESUMO

The ancestral galectin from the sponge Geodia cydonium (GCG) is classified on a structural basis to the prototype subfamily, whereas its carbohydrate-binding specificity is related to that of the mammalian chimera-type galectin-3. This dual coordination reveals GCG as a potential precursor of the later evolved galectin subfamilies, which is reflected in the primary structure of the protein. This study provides evidence that GCG is the LECT1 gene product, while neither a previously described LECT2 gene nor a functional LECT2 gene product was found in the specimen under investigation. The electrophoretically separated protein isomers with apparent molecular masses of 13, 15, and 16 kDa correspond to variants of the LECT1 protein-exhibiting peptide sequence polymorphisms that concern critical positions of the carbohydrate recognition domain (13 kDa: Leu51, Asn55, His130, Gly137; 15 kDa: Ser51, Asn55, Asn130, Gly137; 16 kDa: Ser51, Tyr55, Asn130, Glu137). Four residues, highly conserved in the galectin family, are substituted. None of the residues claimed to be involved in interactions with GalNAcalpha1-3 moieties at an extended binding subsite of galectin-3 was identified in the corresponding positions of GCG. Apparently, the substitutions do not confer distinct binding characteristics to the GCG variants as evidenced by binding studies with a recombinantly expressed 15-kDa isoform. The natural isoforms as well as the recombinant 15-kDa isoform oligomerize by the formation of non-covalent heteromeric or homomeric complexes. A phosphorylation of the galectin was confirmed neither by mass spectrometry nor by alkaline phosphatase treatment combined with isoelectric focusing.


Assuntos
Galectinas/química , Galectinas/genética , Polimorfismo Genético , Poríferos/química , Sequência de Aminoácidos , Animais , Sequência de Bases , Sequência de Carboidratos , Sequência Conservada , Galectinas/metabolismo , Dados de Sequência Molecular , Peso Molecular , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos
14.
BMC Cancer ; 5: 133, 2005 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-16225703

RESUMO

BACKGROUND: Transthyretin (TTR), a traditional biomarker for nutritional and inflammatory status exists in different molecular variants of yet unknown importance. A truncated form of TTR has recently been described to be part of a set of biomarkers for the diagnosis of ovarian cancer. The main aim of the study was therefore to characterize differences in microheterogeneity between ascitic fluid and plasma of women affected with ovarian cancer and to evaluate the tumor site as the possible source of TTR. METHODS: Subjects were 48 women with primary invasive epithelial ovarian cancer or recurrent ovarian carcinoma. The control group consisted of 20 postmenopausal women. TTR and retinol-binding protein (RBP) levels were measured by enzyme-linked immunoassay (ELISA) and C-reactive protein (CRP) levels by a high-sensitivity latex particle turbidimetric assay. The molecular heterogeneity of TTR was analysed using immunoprecipitation and matrix-associated laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS). Presence of TTR in tumor tissue was determined with indirect peroxidase immunostaining. RESULTS: TTR and RBP (microg/ml) levels in serum were 148.5 +/- 96.7 and 22.5 +/- 14.8 in affected women compared to 363.3 +/- 105.5 and 55.8 +/- 9.3 in healthy postmenopausal women (p < 0.01). In ascitic fluid, levels were 1.02 +/- 0.24 and 4.63 +/- 1.57 microg/ml, respectively. The mean levels of TTR and RBP in serum showed a tendency to decrease with the severity of the disease and were lower in affected women whose CRP levels were > 40 mg/ml (p = 0.08 for TTR; p < 0.05 for RBP). No differences in TTR microheterogeneity were observed between TTR isolated from serum of affected and healthy women or from ascitic fluid. TTR occurred rather consistently in four variants. Mass signals were at 13758 +/- 7, 13876 +/- 13 (greatest intensity), 13924 +/- 21 and 14062 +/- 24 Da, representing native, S-cysteinylated, S-cysteinglycinylated and glutathionylated TTR, respectively. Serum of healthy and affected women as well as ascitic fluid contained the truncated fragment of TTR (12828 +/- 11 Da). No immunoreactive TTR was observed in the tumor sites. CONCLUSION: The severity of the cancer associated catabolism as well as the inflammation status affect serum TTR and RBP levels. Neither TTR nor its truncated form originates from tumor tissue and its occurrence in ascites may well reflect the filtration from blood into ascitic fluid.


Assuntos
Líquido Ascítico/metabolismo , Biomarcadores Tumorais/biossíntese , Neoplasias Ovarianas/sangue , Pré-Albumina/biossíntese , Adulto , Idoso , Proteína C-Reativa/biossíntese , Carcinoma/sangue , Carcinoma/metabolismo , Estudos de Casos e Controles , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Imuno-Histoquímica , Imunoprecipitação , Inflamação , Pessoa de Meia-Idade , Neoplasias Ovarianas/metabolismo , Peroxidases/metabolismo , Recidiva , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
15.
Proteomics ; 5(11): 2981-99, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15986334

RESUMO

Mitochondrial diseases may be caused by numerous mutations that alter proteins of the respiratory chain and of other metabolic pathways in the mitochondrium. For clinicians this disease group poses a considerable diagnostic challenge due to ambiguous genotype-phenotype relationships. Until now, only 30% of the mitochondriopathies can be diagnosed at the molecular level. We therefore need a new diagnostic tool that offers a wide view on the mitochondrial proteins. Here, we present a method to generate a high-resolution, large-gel two-dimensional gel electrophoretic (2-DE) map of a purified fraction of mitochondrial proteins from Epstein-Barr virus-immortalized lymphoblastoid cell line (LCL). LCLs can be easily obtained from patients and control subjects in a routine clinical setting. They often express the biochemical phenotype and can be cultured to high cell numbers, sufficient to gain enough purified material for 2-DE. In total we identified 166 mitochondrial proteins. Thirteen proteins were earlier not known to be of mitochondrial origin. Thirty-nine proteins were associated with human diseases ranging from respiratory chain enzyme deficiencies to disorders of beta-oxidation and amino acid metabolism. This 2-DE map is intended to be the first step to diagnose mitochondrial diseases at the proteomic level.


Assuntos
Eletroforese em Gel Bidimensional , Doenças Mitocondriais/patologia , Proteínas Mitocondriais/isolamento & purificação , Linhagem Celular Transformada , Deficiência de Citocromo-c Oxidase/patologia , Bases de Dados Genéticas , Herpesvirus Humano 4 , Humanos , Linfócitos , Doenças Mitocondriais/diagnóstico , Proteínas Mitocondriais/metabolismo , Mutação , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
16.
Chemphyschem ; 6(2): 267-76, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15751349

RESUMO

Photochemical and photophysical properties were investigated for poly(arylenevinylene)s containing a flexible biphenyl "hinge" unit by applying one-photon (OP) and two-photon (TP) excitation to explore excited-state properties. The poly(arylenevinylene)s were poly[(2,5-dihexyloxy-p-phenylenevinylene)-alt-(4,4'-dihexyloxy-3,3'-biphenylenevinylene)] (1), poly[(2,5-dihexyloxy-p-phenylenevinylene)-alt-(2,2'-dihexyloxy-3,3'-biphenylenevinylene)] (2), and poly[(2,5-dihexyloxy-p-phenylenevinylene)-alt-(2,2'-biphenylenevinylene)] (3). Effective emission quantum yields and related photonic properties were evaluated on a realistic per-chromophore basis using effective conjugation lengths based on the Strickler-Berg relationship. Intramolecular photocyclization was deduced to occur in the one case where the biphenyl molecular connectivity permitted the reaction, based on matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF), heteronuclear multiple-quantum coherence (HMQC)-NMR, and gel-permeation chromatography (GPC) results. The various photoprocesses could be induced by either OP or TP excitation, though the first excited singlet state is the photoactive state. The higher excitation energy of the TP excited state favors indirect population of the S, state by electronic coupling between the TP and OP excited states [lambda(max)TPE (nm): 726; delta (GM): 1=229, 2=215, 3= 109). Photochemical processes occurring from the lowest OP excited state (S1) could therefore also be indirectly induced by TP excitation.

17.
Eur J Biochem ; 271(20): 3978-89, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15479227

RESUMO

Saccharomyces cerevisiae possesses two glycogenin isoforms (designated as Glg1p and Glg2p) that both contain a conserved tyrosine residue, Tyr232. However, Glg2p possesses an additional tyrosine residue, Tyr230 and therefore two potential autoglucosylation sites. Glucosylation of Glg2p was studied using both matrix-assisted laser desorption ionization and electrospray quadrupole time of flight mass spectrometry. Glg2p, carrying a C-terminal (His6) tag, was produced in Escherichia coli and purified. By tryptic digestion and reversed phase chromatography a peptide (residues 219-246 of the complete Glg2p sequence) was isolated that contained 4-25 glucosyl residues. Following incubation of Glg2p with UDPglucose, more than 36 glucosyl residues were covalently bound to this peptide. Using a combination of cyanogen bromide cleavage of the protein backbone, enzymatic hydrolysis of glycosidic bonds and reversed phase chromatography, mono- and diglucosylated peptides having the sequence PNYGYQSSPAM were generated. MS/MS spectra revealed that glucosyl residues were attached to both Tyr232 and Tyr230 within the same peptide. The formation of the highly glucosylated eukaryotic Glg2p did not favour the bacterial glycogen accumulation. Under various experimental conditions Glg2p-producing cells accumulated approximately 30% less glycogen than a control transformed with a Glg2p lacking plasmid. The size distribution of the glycogen and extractable activities of several glycogen-related enzymes were essentially unchanged. As revealed by high performance anion exchange chromatography, the intracellular maltooligosaccharide pattern of the bacterial cells expressing the functional eukaryotic transgene was significantly altered. Thus, the eukaryotic glycogenin appears to be incompatible with the bacterial initiation of glycogen biosynthesis.


Assuntos
Escherichia coli/metabolismo , Glicogênio/metabolismo , Glicoproteínas/metabolismo , Saccharomyces cerevisiae/metabolismo , Tirosina/metabolismo , Sítios de Ligação , Eletroforese em Gel de Poliacrilamida , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Glucosiltransferases , Glicoproteínas/genética , Glicosilação , Polissacarídeos/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Uridina Difosfato Glucose/metabolismo
18.
Plant Physiol ; 135(4): 2068-77, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15286293

RESUMO

The starch excess phenotype of Arabidopsis mutants defective in the starch phosphorylating enzyme glucan, water dikinase (EC 2.7.9.4) indicates that phosphorylation of starch is required for its degradation. However, the underlying mechanism has not yet been elucidated. In this study, two in vivo systems have been established that allow the analysis of phosphorylation of transitory starch during both biosynthesis in the light and degradation in darkness. First, a photoautotrophic culture of the unicellular green alga Chlamydomonas reinhardtii was used to monitor the incorporation of exogenously supplied (32)P orthophosphate into starch. Illuminated cells incorporated (32)P into starch with a constant rate during 2 h. By contrast, starch phosphorylation in darkened cells exceeded that in illuminated cells within the first 30 min, but subsequently phosphate incorporation declined. Pulse-chase experiments performed with (32)P/(31)P orthophosphate revealed a high turnover of the starch-bound phosphate esters in darkened cells but no detectable turnover in illuminated cells. Secondly, leaf starch granules were isolated from potato (Solanum tuberosum) plants grown under controlled conditions and glucan chains from the outer granule layer were released by isoamylase. Phosphorylated chains were purified and analyzed using high performance anion-exchange chromatography and matrix-assisted laser desorption/ionization mass spectrometry. Glucans released from the surface of starch granules that had been isolated from darkened leaves possessed a considerably higher degree of phosphorylation than those prepared from leaves harvested during the light period. Thus, in the unicellular alga as well as in potato leaves, net starch degradation is accompanied with an increased phosphorylation of starch.


Assuntos
Chlamydomonas/metabolismo , Amido/metabolismo , Animais , Radioisótopos de Carbono , Chlamydomonas/genética , Escuridão , Cinética , Luz , Fosforilação , Técnica de Diluição de Radioisótopos
19.
J Photochem Photobiol B ; 67(3): 177-86, 2002 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12167317

RESUMO

Fluorescein isothiocyanate (FITC)-myoglobin conjugates were synthesized with a binding stoichiometry of one to three fluorophores per protein. FITC binding sites were determined by matrix-assisted laser desorption-ionization time-of-flight mass spectrometry (MALDI-TOF MS). Five lysine residues and the N-terminal amino group were identified as preferential binding sites. The ground and excited-state absorption spectra and the fluorescence decay of the conjugates in the native and denatured state of the carrier protein were analyzed. For comparison, unbound FITC and FITC covalently bound to a polysaccharide (dextran) were studied. For FITC, FITC-dextran and the FITC-myoglobin conjugates, only one FITC absorption peak was obtained in the ground state spectrum. Similarly, the excited state absorption (ESA) spectra of unbound FITC and of FITC-dextran showed only one single maximum whereas two maxima were detected for the native FITC-myoglobin conjugates. One of these sub-bands disappeared following urea treatment of the conjugate. We conclude that ESA measurements of extrinsic fluorophores on proteins can be used to monitor different micro-environments of the fluorophore and to distinguish between different conformational states of the labeled protein. This method can be a useful tool for analysing coexisting protein conformations.


Assuntos
Fluoresceína-5-Isotiocianato/metabolismo , Espectrometria de Massas/métodos , Mioglobina/metabolismo , Espectrometria de Fluorescência/métodos , Sítios de Ligação , Cromatografia Líquida de Alta Pressão
20.
Biomacromolecules ; 3(4): 696-704, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-12099813

RESUMO

Chitin/chitosan oligosaccharides composed of 2-acetamido-2-deoxy-D-glucopyranose (GlcNAc) and/or 2-amino-2-deoxy-D-glucopyranose (GlcN) were prepared by chemical degradation of chitin or chitosan and separated by gel permeation chromatography. Oligosaccharides obtained after enzymatic hydrolysis of chitosan [F(A) 0.19] with a fungal chitinase were derivatized by reductive amination with 2-aminoacridone and sequenced by matrix-assisted laser desorption ionization time-of-flight postsource decay (PSD) mass spectrometry (MS). The sequence of a trimer, D1A2, was established as D-A-A. The composition of a hexamer D3A3 was ca. 65% D-A-D-D-A-A and 35% D-D-A-D-A-A. The PSD MS of a nonamer D5A4-amac revealed four isobaric species D-X-Y-D-X-Y-D-A-A, where A is GlcNAc, D is GlcN, and X and Y (X not equal Y) are mutually either D or A. This structure motif was also observed in a dodecamer D7A5 which was composed of eight isobaric sequences of the general formula (D-X-Y)(3)-D-A-A.


Assuntos
Sequência de Carboidratos , Quitina/análogos & derivados , Quitina/análise , Oligossacarídeos/análise , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Animais , Quitina/química , Quitosana , Crustáceos/química , Dados de Sequência Molecular , Oligossacarídeos/química , Análise de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA