Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
ACS Appl Mater Interfaces ; 15(10): 12678-12695, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36876876

RESUMO

Hydrogels have shown potential in replacing damaged nerve tissue, but the ideal hydrogel is yet to be found. In this study, various commercially available hydrogels were compared. Schwann cells, fibroblasts, and dorsal root ganglia neurons were seeded on the hydrogels, and their morphology, viability, proliferation, and migration were examined. Additionally, detailed analyses of the gels' rheological properties and topography were conducted. Our results demonstrate vast differences on cell elongation and directed migration on the hydrogels. Laminin was identified as the driver behind cell elongation and in combination with a porous, fibrous, and strain-stiffening matrix structure responsible for oriented cell motility. This study improves our understanding of cell-matrix interactions and thereby facilitates tailored fabrication of hydrogels in the future.


Assuntos
Hidrogéis , Laminina , Laminina/farmacologia , Hidrogéis/farmacologia , Hidrogéis/química , Neurônios , Células de Schwann , Movimento Celular
3.
Int J Mol Sci ; 23(7)2022 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-35408800

RESUMO

A growing body of studies indicate that small noncoding RNAs, especially microRNAs (miRNA), play a crucial role in response to peripheral nerve injuries. During Wallerian degeneration and regeneration processes, they orchestrate several pathways, in particular the MAPK, AKT, and EGR2 (KROX20) pathways. Certain miRNAs show specific expression profiles upon a nerve lesion correlating with the subsequent nerve regeneration stages such as dedifferentiation and with migration of Schwann cells, uptake of debris, neurite outgrowth and finally remyelination of regenerated axons. This review highlights (a) the specific expression profiles of miRNAs upon a nerve lesion and (b) how miRNAs regulate nerve regeneration by acting on distinct pathways and linked proteins. Shedding light on the role of miRNAs associated with peripheral nerve regeneration will help researchers to better understand the molecular mechanisms and deliver targets for precision medicine.


Assuntos
MicroRNAs , Traumatismos dos Nervos Periféricos , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Regeneração Nervosa/genética , Traumatismos dos Nervos Periféricos/genética , Traumatismos dos Nervos Periféricos/metabolismo , Traumatismos dos Nervos Periféricos/terapia , Nervos Periféricos/metabolismo , Células de Schwann/metabolismo , Nervo Isquiático/metabolismo
4.
FASEB J ; 35(2): e21196, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33210360

RESUMO

The search for a suitable material to promote regeneration after long-distance peripheral nerve defects turned the spotlight on spider silk. Nerve conduits enriched with native spider silk fibers as internal guiding structures previously demonstrated a regenerative outcome similar to autologous nerve grafts in animal studies. Nevertheless, spider silk is a natural material with associated limitations for clinical use. A promising alternative is the production of recombinant silk fibers that should mimic the outstanding properties of their native counterpart. However, in vitro data on the regenerative features that native silk fibers provide for cells involved in nerve regeneration are scarce. Thus, there is a lack of reference parameters to evaluate whether recombinant silk fiber candidates will be eligible for nerve repair in vivo. To gain insight into the regenerative effect of native spider silk, our study aims to define the behavioral response of primary Schwann cells (SCs), nerve-associated fibroblasts (FBs), and dorsal root ganglion (DRG) neurons cultured on native dragline silk from the genus Nephila and on laminin coated dishes. The established multi-color immunostaining panels together with confocal microscopy and live cell imaging enabled the analysis of cell identity, morphology, proliferation, and migration on both substrates in detail. Our findings demonstrated that native spider silk rivals laminin coating as it allowed attachment and proliferation and supported the characteristic behavior of all tested cell types. Axonal out-growth of DRG neurons occurred along longitudinally aligned SCs that formed sustained bundled structures resembling Bungner bands present in regenerating nerves. The migration of SCs along the silk fibers achieved the reported distance of regenerating axons of about 1 mm per day, but lacked directionality. Furthermore, rFBs significantly reduced the velocity of rSCs in co-cultures on silk fibers. In summary, this study (a) reveals features recombinant silk must possess and what modifications or combinations could be useful for enhanced nerve repair and (b) provides assays to evaluate the regenerative performance of silk fibers in vitro before being applied as internal guiding structure in nerve conduits in vivo.


Assuntos
Fibroblastos/efeitos dos fármacos , Regeneração Nervosa , Células de Schwann/efeitos dos fármacos , Células Receptoras Sensoriais/efeitos dos fármacos , Seda/farmacologia , Animais , Movimento Celular , Células Cultivadas , Feminino , Fibroblastos/fisiologia , Masculino , Crescimento Neuronal , Ratos , Ratos Sprague-Dawley , Células de Schwann/fisiologia , Células Receptoras Sensoriais/fisiologia , Aranhas
5.
PLoS One ; 15(5): e0233647, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32442229

RESUMO

In response to injury, adult Schwann cells (SCs) re-enter the cell cycle, change their expression profile, and exert repair functions important for wound healing and the re-growth of axons. While this phenotypical instability of SCs is essential for nerve regeneration, it has also been implicated in cancer progression and de-myelinating neuropathies. Thus, SCs became an important research tool to study the molecular mechanisms involved in repair and disease and to identify targets for therapeutic intervention. A high purity of isolated SC cultures used for experimentation must be demonstrated to exclude that novel findings are derived from a contaminating fibroblasts population. In addition, information about the SC proliferation status is an important parameter to be determined in response to different treatments. The evaluation of SC purity and proliferation, however, usually depends on the time consuming, manual assessment of immunofluorescence stainings or comes with the sacrifice of a large amount of SCs for flow cytometry analysis. We here show that rat SC culture derived cytospins stained for SC marker SOX10, proliferation marker EdU, intermediate filament vimentin and DAPI allowed the determination of SC identity and proliferation by requiring only a small number of cells. Furthermore, the CellProfiler software was used to develop an automated image analysis pipeline that quantified SCs and proliferating SCs from the obtained immunofluorescence images. By comparing the results of total cell count, SC purity and SC proliferation rate between manual counting and the CellProfiler output, we demonstrated applicability and reliability of the established pipeline. In conclusion, we here combined the cytospin technique, a multi-colour immunofluorescence staining panel, and an automated image analysis pipeline to enable the quantification of SC purity and SC proliferation from small cell aliquots. This procedure represents a solid read-out to simplify and standardize the quantification of primary SC culture purity and proliferation.


Assuntos
Células de Schwann/citologia , Animais , Biomarcadores/metabolismo , Proliferação de Células , Células Cultivadas , Feminino , Ratos , Ratos Sprague-Dawley
6.
Cells ; 9(1)2020 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-31936601

RESUMO

Recent studies showed a beneficial effect of adipose stem cell-derived extracellular vesicles (ADSC-EVs) on sciatic nerve repair, presumably through Schwann cell (SC) modulation. However, it has not yet been elucidated whether ADSC-EVs exert this supportive effect on SCs by extracellular receptor binding, fusion to the SC membrane, or endocytosis mediated internalization. ADSCs, ADSC-EVs, and SCs were isolated from rats and characterized according to associated marker expression and properties. The proliferation rate of SCs in response to ADSC-EVs was determined using a multicolor immunofluorescence staining panel followed by automated image analysis. SCs treated with ADSC-EVs and silica beads were further investigated by 3-D high resolution confocal microscopy and live cell imaging. Our findings demonstrated that ADSC-EVs significantly enhanced the proliferation of SCs in a time- and dose-dependent manner. 3-D image analysis revealed a perinuclear location of ADSC-EVs and their accumulation in vesicular-like structures within the SC cytoplasm. Upon comparing intracellular localization patterns of silica beads and ADSC-EVs in SCs, we found striking resemblance in size and distribution. Live cell imaging visualized that the uptake of ADSC-EVs preferentially took place at the SC processes from which the EVs were transported towards the nucleus. This study provided first evidence for an endocytosis mediated internalization of ADSC-EVs by SCs and underlines the therapeutic potential of ADSC-EVs in future approaches for nerve regeneration.


Assuntos
Tecido Adiposo/citologia , Endocitose , Vesículas Extracelulares/metabolismo , Células de Schwann/citologia , Células-Tronco/metabolismo , Animais , Proliferação de Células , Sobrevivência Celular , Ratos Sprague-Dawley , Células de Schwann/metabolismo , Células-Tronco/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA