Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Plant Divers ; 45(2): 125-132, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37069926

RESUMO

The Hickeliinae (Poaceae: Bambusoideae) is an ecologically and economically significant subtribe of tropical bamboos restricted to Madagascar, Comoros, Reunion Island, and a small part of continental Africa (Tanzania). Because these bamboos rarely flower, field identification is challenging, and inferring the evolutionary history of Hickeliinae from herbarium specimens is even more so. Molecular phylogenetic work is critical to understanding this group of bamboos. Here, comparative analysis of 22 newly sequenced plastid genomes showed that members of all genera of Hickeliinae share evolutionarily conserved plastome structures. We also determined that Hickeliinae plastome sequences are informative for phylogenetic reconstructions. Phylogenetic analysis showed that all genera of Hickeliinae are monophyletic, except for Nastus, which is paraphyletic and forms two distant clades. The type species of Nastus (Clade II) is endemic to Reunion Island and is not closely related to other sampled species of Nastus endemic to Madagascar (Clade VI). Clade VI (Malagasy Nastus) is sister to the Sokinochloa + Hitchcockella clade (Clade V), and both clades have a clumping habit with short-necked pachymorph rhizomes. The monotypic Decaryochloa is remarkable in having the longest floret in Bambuseae and forms a distinct Clade IV. Clade III, which has the highest generic diversity, consists of Cathariostachys, Perrierbambus, Sirochloa, and Valiha, which are also morphologically diverse. This work provides significant resources for further genetic and phylogenomic studies of Hickeliinae, an understudied subtribe of bamboo.

2.
Sci Rep ; 11(1): 21965, 2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34753985

RESUMO

Madagascar's emblematic traveller's tree is a monospecific genus within Strelitziaceae, the family of the South African bird of paradise. Until now, this endemic genus consisted of a single species: Ravenala madagascariensis Sonn., which is grown everywhere in the tropics as an ornamental plant. The plant is immediately recognizable for its huge fan-forming banana-like leaves and is locally referred to in Magagascar by several vernacular names. "Variants" have been mentioned in the literature, but without any attempt to recognize formal taxa based on diagnostic features. In this paper, we formally describe five new species and fix the application of the name R. madagascariensis to the populations growing on the eastern coast of Madagascar, with the epitype growing in the marshy Fort-Dauphin area in the south. This paper has numerous implications for conservation biology and other domains of life sciences, due to the importance of this genus for the conservation of Madagascan ecosystems, the ornamental plant trade, as well as for its invasive status in several tropical areas.


Assuntos
Strelitziaceae/classificação , Ecossistema , Madagáscar , Filogenia , Especificidade da Espécie
3.
PhytoKeys ; 156: 125-137, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32913413

RESUMO

Lush jungle flagship species, woody bamboos (Poaceae-Bambusoideae) are famed for their synchronous flowering as well as the extensive "bamboo forests" some species can form in tropical or temperate environments. In portions of their natural distribution, Bambusoideae members developed various adaptations to seasonality in environmental parameters, such as frost or seasonal drought. A new taxon, Laobambos calcareus, described here, is extremely novel in showing the first documented case of succulence in bamboos, with its ability to seasonally vary the volume of its stem depending on the quantity of water stored. Anatomical studies presented in this paper document this specificity at the cellular level. Though no flowers or fruits are known yet, unique morphological characteristics along with an investigation of its phylogenetic affinities using molecular data show that this new taxon should belong to a new genus herein described.

4.
Sci Rep ; 9(1): 14471, 2019 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-31597935

RESUMO

Island systems are among the most vulnerable to climate change, which is predicted to induce shifts in temperature, rainfall and/or sea levels. Our aim was: (i) to map the relative vulnerability of islands to each of these threats from climate change on a worldwide scale; (ii) to estimate how island vulnerability would impact phylogenetic diversity. We focused on monocotyledons, a major group of flowering plants that includes taxa of important economic value such as palms, grasses, bananas, taro. Islands that were vulnerable to climate change were found at all latitudes, e.g. in Australia, Indonesia, the Caribbean, Pacific countries, the United States, although they were more common near the equator. The loss of highly vulnerable islands would lead to relatively low absolute loss of plant phylogenetic diversity. However, these losses tended to be higher than expected by chance alone even in some highly vulnerable insular systems. This suggests the possible collapse of deep and long branches in vulnerable islands. Measuring the vulnerability of each island is a first step towards a risk analysis to identify where the impacts of climate change are the most likely and what may be their consequences on biodiversity.


Assuntos
Biodiversidade , Mudança Climática , Ilhas , Magnoliopsida/classificação , Filogenia
5.
Sci Rep ; 9(1): 11693, 2019 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-31406123

RESUMO

Islands have remarkable levels of endemism and contribute greatly to global biodiversity. Establishing the age of island endemics is important to gain insights into the processes that have shaped the biodiversity patterns of island biota. We investigated the relative age of monocots across islands worldwide, using different measures of phylogenetic endemism tested against null models. We compiled a species occurrence dataset across 4,306 islands, and identified 142 sites with neo-, paleo-, mixed and super-endemism. These sites were distributed across the world, although they tended to be more common at low latitudes. The most frequent types of endemism were mixed and super-endemism, which suggests that present-day island biodiversity has frequently been shaped by processes that took place at different points in times. We also identified the environmental factors that contributed most to different types of endemism; we found that latitude, habitat availability and climate stability had a significant impact on the persistence of ancient taxa and on recent diversification events. The islands identified here are irreplaceable both for the uniqueness and the evolutionary history of their flora, and because they are a source of "option values" and evolutionary potential. Therefore, our findings will help guide biodiversity conservation on a global scale.


Assuntos
Evolução Biológica , Magnoliopsida/fisiologia , Filogenia , Dispersão Vegetal/fisiologia , Biodiversidade , Clima , Conservação dos Recursos Naturais/métodos , Ecossistema , Humanos , Ilhas , Magnoliopsida/anatomia & histologia , Magnoliopsida/classificação , Fatores de Tempo
6.
PhytoKeys ; 122: 97-102, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31182910

RESUMO

Neotypes are designated for five names in Kaempferia (Zingiberaceae) from Lao PDR, namely K.attapeuensis Picheans. & Koonterm, K.champasakensis Picheans. & Koonterm, K.gigantiphylla Picheans. & Koonterm, K.sawanensis Picheans. & Koonterm and K.xiengkhouangensis Picheans. & Phokham.

7.
BMC Plant Biol ; 17(1): 260, 2017 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-29268709

RESUMO

BACKGROUND: Heterogeneous rates of molecular evolution are universal across the tree of life, posing challenges for phylogenetic inference. The temperate woody bamboos (tribe Arundinarieae, Poaceae) are noted for their extremely slow molecular evolutionary rates, supposedly caused by their mysterious monocarpic reproduction. However, the correlation between substitution rates and flowering cycles has not been formally tested. RESULTS: Here we present 15 newly sequenced plastid genomes of temperate woody bamboos, including the first genomes ever sequenced from Madagascar representatives. A data matrix of 46 plastid genomes representing all 12 lineages of Arundinarieae was assembled for phylogenetic and molecular evolutionary analyses. We conducted phylogenetic analyses using different sequences (e.g., coding and noncoding) combined with different data partitioning schemes, revealing conflicting relationships involving internodes among several lineages. A great difference in branch lengths were observed among the major lineages, and topological inconsistency could be attributed to long-branch attraction (LBA). Using clock model-fitting by maximum likelihood and Bayesian approaches, we furthermore demonstrated extensive rate variation among these major lineages. Rate accelerations mainly occurred for the isolated lineages with limited species diversification, totaling 11 rate shifts during the tribe's evolution. Using linear regression analysis, we found a negative correlation between rates of molecular evolution and flowering cycles for Arundinarieae, notwithstanding that the correlation maybe insignificant when taking the phylogenetic structure into account. CONCLUSIONS: Using the temperate woody bamboos as an example, we found further evidence that rate heterogeneity is universal in plants, suggesting that this will pose a challenge for phylogenetic reconstruction of bamboos. The bamboos with longer flowering cycles tend to evolve more slowly than those with shorter flowering cycles, in accordance with a putative generation time effect.


Assuntos
Evolução Molecular , Genoma de Planta/genética , Genomas de Plastídeos/genética , Poaceae/genética , Flores/fisiologia , Filogenia , Poaceae/fisiologia , Reprodução , Análise de Sequência de DNA
8.
Sci Rep ; 7(1): 11099, 2017 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-28894196

RESUMO

Flowers embedded in amber are rare. Only about 70 flowers or inflorescences have been described among which only one lamiid is known. Nevertheless, these fossils are important to our understanding of evolutionary process and past diversity due to the exceptional preservation of fragile structures not normally preserved. In this work, a new flower named Icacinanthium tainiaphorum sp. nov. from Le Quesnoy (Houdancourt, Oise, France) is described. Our phylogenetic analysis with extant species suggests that the affinity of this flower lies with the family Icacinaceae, close to Natsiatum or Hosiea. The fossil shows a combination of features unknown in extant Icacinaceae and we thus propose the description of a new fossil genus. It reveals a previously unknown diversity in the family and demonstrates the complementarity of different types of fossil preservation for a better understanding of past floral diversity.


Assuntos
Âmbar , Flores , Fósseis , Magnoliopsida , Flores/anatomia & histologia , Flores/ultraestrutura , Fósseis/anatomia & histologia , Fósseis/ultraestrutura , França , Magnoliopsida/anatomia & histologia , Magnoliopsida/classificação , Magnoliopsida/genética , Magnoliopsida/ultraestrutura , Fenótipo , Filogenia
9.
Nat Commun ; 8: 16047, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28763051

RESUMO

Recent advances in molecular phylogenetics and a series of important palaeobotanical discoveries have revolutionized our understanding of angiosperm diversification. Yet, the origin and early evolution of their most characteristic feature, the flower, remains poorly understood. In particular, the structure of the ancestral flower of all living angiosperms is still uncertain. Here we report model-based reconstructions for ancestral flowers at the deepest nodes in the phylogeny of angiosperms, using the largest data set of floral traits ever assembled. We reconstruct the ancestral angiosperm flower as bisexual and radially symmetric, with more than two whorls of three separate perianth organs each (undifferentiated tepals), more than two whorls of three separate stamens each, and more than five spirally arranged separate carpels. Although uncertainty remains for some of the characters, our reconstruction allows us to propose a new plausible scenario for the early diversification of flowers, leading to new testable hypotheses for future research on angiosperms.


Assuntos
Flores/anatomia & histologia , Magnoliopsida/anatomia & histologia , Evolução Biológica , Fenótipo , Filogenia
10.
Sci Data ; 4: 170016, 2017 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-28195585

RESUMO

We provide a quantitative description of the French national herbarium vascular plants collection dataset. Held at the Muséum national d'histoire naturelle, Paris, it currently comprises records for 5,400,000 specimens, representing 90% of the estimated total of specimens. Ninety nine percent of the specimen entries are linked to one or more images and 16% have field-collecting information available. This major botanical collection represents the results of over three centuries of exploration and study. The sources of the collection are global, with a strong representation for France, including overseas territories, and former French colonies. The compilation of this dataset was made possible through numerous national and international projects, the most important of which was linked to the renovation of the herbarium building. The vascular plant collection is actively expanding today, hence the continuous growth exhibited by the dataset, which can be fully accessed through the GBIF portal or the MNHN database portal (available at: https://science.mnhn.fr/institution/mnhn/collection/p/item/search/form). This dataset is a major source of data for systematics, global plants macroecological studies or conservation assessments.


Assuntos
Plantas , França , Museus
11.
Mol Phylogenet Evol ; 96: 118-129, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26723898

RESUMO

In this paper we investigate the biogeography of the temperate woody bamboos (Arundinarieae) using a densely-sampled phylogenetic tree of Bambusoideae based on six plastid DNA loci, which corroborates the previously discovered 12 lineages (I-XII) and places Kuruna as sister to the Chimonocalamus clade. Biogeographic analyses revealed that the Arundinarieae diversified from an estimated 12 to 14Mya, and this was followed by rapid radiation within the lineages, particularly lineages IV, V and VI, starting from c. 7-8Mya. It is suggested that the late Miocene intensification of East Asian monsoon may have contributed to this burst of diversification. The possibilities of the extant Sri Lankan and African temperate bamboo lineages representing 'basal elements' could be excluded, indicating that there is no evidence to support the Indian or African route for migration of temperate bamboo ancestors to Asia. Radiations from eastern Asia to Africa, Sri Lanka, and to North America all are likely to have occurred during the Pliocene, to form the disjunct distribution of Arundinarieae we observe today. The two African lineages are inferred as being derived independently from Asian ancestors, either by overland migrations or long-distance dispersals. Beringian migration may explain the eastern Asian-eastern North American disjunction.


Assuntos
Filogenia , Plastídeos/genética , Poaceae/genética , Madeira , África , Ásia , América do Norte , Filogeografia , Poaceae/classificação , Sri Lanka , Madeira/genética
12.
Syst Biol ; 63(5): 697-711, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24852061

RESUMO

Patterns of adaptation in response to environmental variation are central to our understanding of biodiversity, but predictions of how and when broad-scale environmental conditions such as climate affect organismal form and function remain incomplete. Succulent plants have evolved in response to arid conditions repeatedly, with various plant organs such as leaves, stems, and roots physically modified to increase water storage. Here, we investigate the role played by climate conditions in shaping the evolution of succulent forms in a plant clade endemic to Madagascar and the surrounding islands, part of the hyper-diverse genus Euphorbia (Euphorbiaceae). We used multivariate ordination of 19 climate variables to identify links between particular climate variables and three major forms of succulence-succulent leaves, cactiform stem succulence, and tubers. We then tested the relationship between climatic conditions and succulence, using comparative methods that account for shared evolutionary history. We confirm that plant water storage is associated with the two components of aridity, temperature, and precipitation. Cactiform stem succulence, however, is not prevalent in the driest environments, countering the widely held view of cactiforms as desert icons. Instead, leaf succulence and tubers are significantly associated with the lowest levels of precipitation. Our findings provide a clear link between broad-scale climatic conditions and adaptation in land plants, and new insights into the climatic conditions favoring different forms of succulence. This evidence for adaptation to climate raises concern over the evolutionary future of succulent plants as they, along with other organisms, face anthropogenic climate change.


Assuntos
Biodiversidade , Clima , Euphorbia/classificação , Euphorbia/fisiologia , Filogenia , Euphorbia/genética , Marcadores Genéticos/genética , Especiação Genética , Madagáscar , Folhas de Planta/fisiologia
13.
Mol Ecol Resour ; 13(1): 57-65, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23095939

RESUMO

The island of Madagascar is a key hot spot for the genus Euphorbia, with at least 170 native species, almost all endemic. Threatened by habitat loss and illegal collection of wild plants, nearly all Malagasy Euphorbia are listed in CITES Appendices I and II. The absence of a reliable taxonomic revision makes it particularly difficult to identify these plants, even when fertile, and thereby compromises the application of CITES regulations. DNA barcoding, which can facilitate species-level identification irrespective of developmental stage and the presence of flowers or fruits, may be a promising tool for monitoring and controlling trade involving threatened species. In this study, we test the potential value of barcoding on 41 Euphorbia species representative of the genus in Madagascar, using the two widely adopted core barcode markers (matK and rbcL), along with two additional DNA regions, nuclear internal transcribed spacer (ITS) and the chloroplastic intergenic spacer psbA-trnH. For each marker and for selected marker combinations, inter- and intraspecific distance estimates and species discrimination rates are calculated. Results using just the 'official' barcoding markers yield overlapping inter- and intraspecific ranges and species discrimination rates below 60%. When ITS is used, whether alone or in combination with the core markers, species discrimination increases to nearly 100%, whereas the addition of psbA-trnH produces less satisfactory results. This study, the first ever to test barcoding on the large, commercially important genus Euphorbia shows that this method could be developed into a powerful identification tool and thereby contribute to more effective application of CITES regulations.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais/métodos , Código de Barras de DNA Taxonômico/métodos , Euphorbia/genética , Sequência de Bases , Conservação dos Recursos Naturais/legislação & jurisprudência , DNA Intergênico/genética , Madagáscar , Dados de Sequência Molecular , Análise de Sequência de DNA
14.
Mol Phylogenet Evol ; 57(1): 258-65, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20601002

RESUMO

Ptaeroxylaceae is an Afro-Malagasy family containing three genera, Bottegoa, Cedrelopsis, and Ptaeroxylon. Although the family is morphologically well delimited, it is currently considered part of the subfamily Spathelioideae in a broadly circumscribed orange family (Rutaceae). The Malagasy Cedrelopsis has traditionally been associated with different families of the order Sapindales and its phylogenetic placement in Rutaceae sensu lato has yet to be tested with molecular data. The present molecular phylogenetic study reaffirms the monophyly of Ptaeroxylaceae and its placement in Spathelioideae. Therefore, molecules and morphology support close affinities between Bottegoa, Cedrelopsis, and Ptaeroxylon and also their current generic circumscriptions. We report a case of an evolutionary change from one-seeded to two-seeded carpels within the Harrisonia-Cneorum-Ptaeroxylaceae clade of Spathelioideae. Finally, the sister-group relationship between the African Bottegoa and the Afro-Malagasy Ptaeroxylon-Cedrelopsis clade suggests an African origin of Cedrelopsis.


Assuntos
Evolução Molecular , Filogenia , Rutaceae/classificação , Rutaceae/genética , DNA de Cloroplastos/genética , DNA de Plantas/genética , Geografia , Sementes , Análise de Sequência de DNA
15.
Ann Bot ; 106(2): 343-57, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20562131

RESUMO

BACKGROUND AND AIMS: In the Mascarenes, a young oceanic archipelago composed of three main islands, the Dombeyoideae (Malvaceae) have diversified extensively with a high endemism rate. With the exception of the genus Trochetia, Mascarene Dombeyoideae are described as dioecious whereas Malagasy and African species are considered to be monocline, species with individuals bearing hermaphrodite/perfect flowers. In this study, the phylogenetic relationships were reconstructed to clarify the taxonomy, understand the phylogeographic pattern of relationships and infer the evolution of the breeding systems for the Mascarenes Dombeyoideae. METHODS: Parsimony and Bayesian analysis of four DNA markers (ITS, rpl16 intron and two intergenic spacers trnQ-rsp16 and psbM-trnD) was used. The molecular matrix comprised 2985 characters and 48 taxa. The Bayesian phylogeny was used to infer phylogeographical hypotheses and the evolution of breeding systems. KEY RESULTS: Parsimony and Bayesian trees produced similar results. The Dombeyoideae from the Mascarenes are polyphyletic and distributed among four clades. Species of Dombeya, Trochetia and Ruizia are nested in the same clade, which implies the paraphyly of Dombeya. Additionally, it is shown that each of the four clades has an independent Malagasy origin. Two adaptive radiation events have occurred within two endemic lineages of the Mascarenes. The polyphyly of the Mascarene Dombeyoideae suggests at least three independent acquisitions of dioecy. CONCLUSIONS: This molecular phylogeny highlights the taxonomic issues within the Dombeyoideae. Indeed, the limits and distinctions of the genera Dombeya, Trochetia and Ruizia should be reconsidered. The close phylogeographic relationships between the flora of the Mascarenes and Madagascar are confirmed. Despite their independent origins and a distinct evolutionary history, each endemic clade has developed a different breeding systems (dioecy) compared with the Malagasy Dombeyoideae. Sex separation appears as an evolutionary convergence and may be the consequence of selective pressures particular to insular environments.


Assuntos
Cloroplastos/genética , DNA de Plantas/genética , Malvaceae/classificação , Malvaceae/genética , Filogenia , Teorema de Bayes , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA