Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mol Biol Rep ; 51(1): 429, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38517566

RESUMO

Drought poses a significant challenge to wheat production globally, leading to substantial yield losses and affecting various agronomic and physiological traits. The genetic route offers potential solutions to improve water-use efficiency (WUE) in wheat and mitigate the negative impacts of drought stress. Breeding for drought tolerance involves selecting desirable plants such as efficient water usage, deep root systems, delayed senescence, and late wilting point. Biomarkers, automated and high-throughput techniques, and QTL genes are crucial in enhancing breeding strategies and developing wheat varieties with improved resilience to water scarcity. Moreover, the role of root system architecture (RSA) in water-use efficiency is vital, as roots play a key role in nutrient and water uptake. Genetic engineering techniques offer promising avenues to introduce desirable RSA traits in wheat to enhance drought tolerance. These technologies enable targeted modifications in DNA sequences, facilitating the development of drought-tolerant wheat germplasm. The article highlighted the techniques that could play a role in mitigating drought stress in wheat.


Assuntos
Triticum , Água , Melhoramento Vegetal , Fenótipo , Secas
3.
Sci Rep ; 13(1): 21697, 2023 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-38066051

RESUMO

Pakistan is the 8th most climate-affected country in the globe along with a semi-arid to arid climate, thereby the crops require higher irrigation from underground water. Moreover, ~ 70% of pumped groundwater in irrigated agriculture is brackish and a major cause of secondary salinization. Cucumber (Cucumis sativus L.) is an important vegetable crop with an annual growth rate of about 3.3% in Pakistan. However, it is a relatively salt-sensitive crop. Therefore, a dire need for an alternate environment-friendly technology like grafting for managing salinity stress in cucumber by utilizing the indigenous cucurbit landraces. In this regard, a non-perforated pot-based study was carried out in a lath house to explore indigenous cucurbit landraces; bottle gourd (Lagenaria siceraria) (cv. Faisalabad Round), pumpkin (Cucurbit pepo. L) (cv. Local Desi Special), sponge gourd (Luffa aegyptiaca) (cv. Local) and ridge gourd (Luffa acutangula) (cv. Desi Special) as rootstocks for inducing salinity tolerance in cucumber (cv. Yahla F1). Four different salts (NaCl) treatments; T0 Control (2.4 dSm-1), T1 (4 dSm-1), T2 (6 dSm-1) and T3 (8 dSm-1) were applied. The grafted cucumber plants were transplanted into the already-induced salinity pots (12-inch). Different morpho-physio-biochemical, antioxidants, ionic, and yield attributes were recorded. The results illustrate that increasing salinity negatively affected the growing cucumber plants. However, grafted cucumber plants showed higher salt tolerance relative to non-grafted ones. Indigenous bottle gourd landrace (cv. Faisalabad Round) exhibited higher salt tolerance compared to non-grafted cucumber plants due to higher up-regulation of morpho-physio-biochemical, ionic, and yield attributes that was also confirmed by principal component analysis (PCA). Shoot and root biomass, chlorophylls contents (a and b), activities of superoxide dismutase (SOD), catalase (CAT) and peroxidase (POX) enzymes, antioxidants scavenging activity (ASA), ionic (↑ K and Ca, ↓ Na), and yield-related attributes were found maximum in cucumber plants grafted onto indigenous bottle gourd landrace. Hence, the indigenous bottle gourd landrace 'cv. Faisalabad round' may be utilized as a rootstock for cucumber under a mild pot-based saline environment. However, indigenous bottle gourd landrace 'cv. Faisalabad round' may further be evaluated as rootstocks in moderate saline field conditions for possible developing hybrid rootstock and, subsequently, sustainable cucumber production.


Assuntos
Cucumis sativus , Cucurbita , Luffa , Tolerância ao Sal , Frutas , Agricultura/métodos , Antioxidantes
4.
Planta ; 258(5): 97, 2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37823963

RESUMO

MAIN CONCLUSION: Genomics-assisted breeding represents a crucial frontier in enhancing the balance between sustainable agriculture, environmental preservation, and global food security. Its precision and efficiency hold the promise of developing resilient crops, reducing resource utilization, and safeguarding biodiversity, ultimately fostering a more sustainable and secure food production system. Agriculture has been seriously threatened over the last 40 years by climate changes that menace global nutrition and food security. Changes in environmental factors like drought, salt concentration, heavy rainfalls, and extremely low or high temperatures can have a detrimental effects on plant development, growth, and yield. Extreme poverty and increasing food demand necessitate the need to break the existing production barriers in several crops. The first decade of twenty-first century marks the rapid development in the discovery of new plant breeding technologies. In contrast, in the second decade, the focus turned to extracting information from massive genomic frameworks, speculating gene-to-phenotype associations, and producing resilient crops. In this review, we will encompass the causes, effects of abiotic stresses and how they can be addressed using plant breeding technologies. Both conventional and modern breeding technologies will be highlighted. Moreover, the challenges like the commercialization of biotechnological products faced by proponents and developers will also be accentuated. The crux of this review is to mention the available breeding technologies that can deliver crops with high nutrition and climate resilience for sustainable agriculture.


Assuntos
Agricultura , Melhoramento Vegetal , Produtos Agrícolas/genética , Genômica , Segurança Alimentar
5.
ACS Omega ; 8(26): 23271-23282, 2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37426212

RESUMO

Phosphorus (P) is one of the six key elements in plant nutrition and effectively plays a vital role in all major metabolic activities. It is an essential nutrient for plants linked to human food production. Although abundantly present in both organic and inorganic forms in soil, more than 40% of cultivated soils are commonly deficient in P concentration. Then, the P inadequacy is a challenge to a sustainable farming system to improve the food production for an increasing population. It is expected that the whole world population will rise to 9 billion by 2050 and, therefore, it is necessary at the same time for agricultural strategies broadly to expand food production up to 80% to 90% by handling the global dilemma which has affected the environment by climatic changes. Furthermore, the phosphate rock annually produced about 5 million metric tons of phosphate fertilizers per year. About 9.5 Mt of phosphorus enters human food through crops and animals such as milk, egg, meat, and fish and is then utilized, and 3.5 Mt P is physically consumed by the human population. Various new techniques and current agricultural practices are said to be improving P-deficient environments, which might help meet the food requirements of an increasing population. However, 4.4% and 3.4% of the dry biomass of wheat and chickpea, respectively, were increased under intercropping practices, which was higher than that in the monocropping system. A wide range of studies showed that green manure crops, especially legumes, improve the soil-available P content of the soil. It is noted that inoculation of arbuscular mycorrhizal fungi could decrease the recommended phosphate fertilizer rate nearly 80%. Agricultural management techniques to improve soil legacy P use by crops include maintaining soil pH by liming, crop rotation, intercropping, planting cover crops, and the consumption of modern fertilizers, in addition to the use of more efficient crop varieties and inoculation with P-solubilizing microorganisms. Therefore, exploring the residual phosphorus in the soil is imperative to reduce the demand for industrial fertilizers while promoting long-term sustainability on a global scale.

6.
ACS Omega ; 8(29): 25988-25998, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37521679

RESUMO

Wheat (Triticum aestivum L.) is a prominent grain crop. The goal of the current experiment was to examine the genetic potential of advanced bread wheat genotypes for yield and stripe rust resistance. Ninety-three bread wheat genotypes including three varieties (Kohat-2017, Pakistan-2013, and Morocco) were field tested in augmented design as observational nurseries at three locations (i.e., Kohat, Nowshera, and Peshawar) during the 2018-19 crop season. Various parameters related to yield and stripe rust resistance showed significant differences among genotypes for most of the characters with few exceptions. The analysis of variance revealed significant variations for all the genotypes for all the traits at all three sites with few exceptions where nonsignificant differences were noticed among genotypes. Averaged over three locations, genotypes exhibiting maximum desirable values for yield and yield components were KT-86 (325 tillers) for tillers m-2, KT-50 (2.86 g) for grain weight spike-1, KT-49 (41.6 g) for 1000-grain weight, KT-50 (74 grains) for grains spikes-1, KT-55 (4.76 g) for spike weight, and KT-36 and KT-072 (4586 kg ha-1) for grain yield. Correlation analysis revealed that grain yield had a significant positive correlation with grain spike-1 and grain weight spike-1 at Kohat, with grains spike-1, tillers m-2, and grain weight spike-1 at Nowshera, and with plant height, spike weight, 1000-grain weight, and tillers m-2 at Peshawar. Molecular marker data and host response in the field at the adult stage revealed that Yr15 and Yr10 are both still effective in providing adequate resistance to wheat against prevalent races of stripe rust. Four lines showing desirable lower average coefficient of infection (ACI) values without carrying Yr15 and Yr10 genes show the presence of unique/new resistance gene(s) in the genetic composition of these four lines. Genotype KT-072 (4586 kg ha-1 and 1.3 ACI), KT-07 (4416 kg ha-1 and 4.3 ACI), KT-10 (4346 kg ha-1 and 1.0 ACI), and KT-62 (4338 kg ha-1 and 2.7 ACI) showed maximum values for grain yield and low desirable ACI values, and these lines could be recommended for general cultivation after procedural requirements of variety release.

7.
ACS Omega ; 8(23): 20471-20487, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37332827

RESUMO

Sustainable agriculture is threatened by salinity stress because of the low yield quality and low crop production. Rhizobacteria that promote plant growth modify physiological and molecular pathways to support plant development and reduce abiotic stresses. The recent study aimed to assess the tolerance capacity and impacts of Bacillus sp. PM31 on the growth, physiological, and molecular responses of maize to salinity stress. In comparison to uninoculated plants, the inoculation of Bacillus sp. PM31 improved the agro-morphological traits [shoot length (6%), root length (22%), plant height (16%), fresh weight (39%), dry weight (29%), leaf area (11%)], chlorophyll [Chl a (17%), Chl b (37%), total chl (22%)], carotenoids (15%), proteins (40%), sugars (43%), relative water (11%), flavonoids (22%), phenols (23%), radical scavenging capacity (13%), and antioxidants. The Bacillus sp. PM31-inoculated plants showed a reduction in the oxidative stress indicators [electrolyte leakage (12%), H2O2 (9%), and MDA (32%)] as compared to uninoculated plants under salinity and increased the level of osmolytes [free amino acids (36%), glycine betaine (17%), proline (11%)]. The enhancement of plant growth under salinity was further validated by the molecular profiling of Bacillus sp. PM31. Moreover, these physiological and molecular mechanisms were accompanied by the upregulation of stress-related genes (APX and SOD). Our study found that Bacillus sp. PM31 has a crucial and substantial role in reducing salinity stress through physiological and molecular processes, which may be used as an alternative approach to boost crop production and yield.

8.
Funct Plant Biol ; 50(8): 623-632, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37231613

RESUMO

Copper (Cu) is an abundant essential micronutrient element in various rocks and minerals and is required for a variety of metabolic processes in both prokaryotes and eukaryotes. However, excess Cu can disturb normal development by adversely affecting biochemical reactions and physiological processes in plants. However, organic soil is rich in micronutrients and can assist plants to tolerate toxicity by promoting growth and biomass. This study explored the potential of organic and Cu-contaminated soil on fibrous jute (Corchorus capsularis ). Plants were grown in the organic soil, natural soil (normal soil) and Cu-contaminated soil for 60days, and we studied different growth, physiological and ultra-structure alterations in the plant. Results showed that the addition of organic acid in the soil showed a remarkable increase in seed germination, plant height, fresh biomass, photosynthetic pigment and gas exchange parameters, and decreased the malondialdehyde (MDA) concentration in the tissues when compared to the plants grown in the natural soil. In contrast, plants grown in the Cu-contaminated soil significantly (P <0.05) decreased the seed germination, plant height, fresh biomass, photosynthetic pigment and gas exchange parameters, and increased MDA content, proline concentration and the activities of various antioxidant compounds; i.e. peroxidase (POD) and superoxidase dismutase (SOD). In addition, Cu toxicity also destroyed many membrane bounded organelles especially the chloroplast, which was revealed from transmission electron microscopy (TEM). We concluded that Cu toxicity affected growth and physiological attributes in C. capsularis , while addition of organic soil increased plant growth and biomass.


Assuntos
Antioxidantes , Solo , Antioxidantes/metabolismo , Biodegradação Ambiental , Estresse Oxidativo/fisiologia , Cobre/toxicidade , Cobre/análise , Cobre/metabolismo , Plantas/metabolismo
9.
ACS Omega ; 8(31): 28207-28232, 2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-38173954

RESUMO

Dynamic shifts in climatic patterns increase soil salinity and boron levels, which are the major abiotic factors that affect plant growth and secondary metabolism. The present study assessed the role of growth regulators, including biochar (5 g kg-1) and gallic acid (GA, 2 mM), in altering leaf morpho-anatomical and physiological responses of Solanum melongena L. exposed to boron (25 mg kg-1) and salinity stresses (150 mM NaCl). These growth regulators enhanced leaf fresh weight (LFW) (70%), leaf dry weight (LDW) (20%), leaf area (LA), leaf area index (LAI) (85%), leaf moisture content (LMC) (98%), and relative water content (RWC) (115%) under salinity and boron stresses. Physiological attributes were analyzed to determine the stress levels and antioxidant protection. Photosynthetic pigments were negatively affected by salinity and boron stresses along with a nonsignificant reduction in trehalose, GA, osmoprotectant, and catalase (CAT) and ascorbate peroxidase (APX) activity. These parameters were improved by biochar application to soil and presoaking seeds in GA (p < 0.05) in both varieties of S. melongena L. Scanning electron microscopy (SEM) and light microscopy revealed that application of biochar and GA improved the stomatal regulation, trichome density, epidermal vigor, stomata size (SS) (13 381 µm), stomata index (SI) (354 mm2), upper epidermis thickness (UET) (123 µm), lower epidermis thickness (LET) (153 µm), cuticle thickness (CT) (11.4 µm), trichome density (TD) (23 per mm2), vein islet number (VIN) (14 per mm2), vein termination number (VTN) (19 per mm2), midrib thickness (MT) (5546 µm), and TD (27.4 mm2) under salinity and boron stresses. These results indicate that the use of inexpensive and easily available biochar and seed priming with GA can improve morpho-anatomical and physiological responses of S. melongena L. under oxidative stress conditions.

10.
Biology (Basel) ; 11(12)2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36552290

RESUMO

Rhizosphere microbiome is a dynamic and complex zone of microbial communities. This complex plant-associated microbial community, usually regarded as the plant's second genome, plays a crucial role in plant health. It is unquestioned that plant microbiome collectively contributes to plant growth and fitness. It also provides a safeguard from plant pathogens, and induces tolerance in the host against abiotic stressors. The revolution in omics, gene-editing and sequencing tools have somehow led to unravel the compositions and latent interactions between plants and microbes. Similarly, besides standard practices, many biotechnological, (bio)chemical and ecological methods have also been proposed. Such platforms have been solely dedicated to engineer the complex microbiome by untangling the potential barriers, and to achieve better agriculture output. Yet, several limitations, for example, the biological obstacles, abiotic constraints and molecular tools that capably impact plant microbiome engineering and functionality, remained unaddressed problems. In this review, we provide a holistic overview of plant microbiome composition, complexities, and major challenges in plant microbiome engineering. Then, we unearthed all inevitable abiotic factors that serve as bottlenecks by discouraging plant microbiome engineering and functionality. Lastly, by exploring the inherent role of micro/macrofauna, we propose economic and eco-friendly strategies that could be harnessed sustainably and biotechnologically for resilient plant microbiome engineering.

11.
Braz J Biol ; 84: e264642, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36169411

RESUMO

Drought is one of the most damaging abiotic stress that hinder plant growth and development. The present study aimed to determine the effects of various Ca/Mg quotients under polyethylene glycol (PEG)-induced osmotic stress on growth, uptake and translocation of Ca and Mg in Avena sativa (L). Plants were grown in nutrient solution supplemented with three different Ca/Mg molar quotients (0.18, 2, and 4). After 30 days plants were exposed to two different PEG (Polyethylene glycol) concentrations (0.6 MPa & 0.2 MPa) for 8 days, and solutions were renewed after 4 days. A solution containing Ca and Mg nutrients has mitigated the negative impact caused via osmotic stress on relative growth rate (RGR), absolute growth rate (AGR), crop growth rate (CGR), leaf area ratio (LAR), Leaf index ratio (LAI), root-shoot ratio (RSR), water use efficiency (WUE) and net assimilation rate (NAR). In addition, it adversely affected germination parameters, including final emergence percentage (FEP), mean germination time (MGT), Timson germination Index (TGI), germination rate index (GRI) and percent field capacity (%FC), of oat (Avena sativa L.). Mg and Ca in shoot and root and Ca translocation factor decreased with increasing Ca in solution, while Mg translocation factor increased with increasing Ca in nutrient solution. In this work, the combined effects of various Ca/Mg quotients and osmotic stress produced by polyethylene glycol (PEG) in different concentrations (0.6 MPa, 0.2 MPa) on the growth and element uptake of Avena sativa L. are examined. As a result, the Ca/Mg Quotient may naturally combat the moderate drought stress experienced by field crops.


Assuntos
Avena , Plântula , Pressão Osmótica , Polietilenoglicóis/farmacologia , Água
12.
Molecules ; 27(18)2022 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-36144480

RESUMO

Salinity is one of the most prevalent abiotic stresses which not only limits plant growth and yield, but also limits the quality of food products. This study was conducted on the surface functionalization of phosphorus-rich mineral apatite nanoparticles (ANPs), with thiourea as a source of nitrogen (TU-ANPs) and through a co-precipitation technique for inducing osmotic stress tolerance in Zea mays. The resulting thiourea-capped apatite nanostructure (TU-ANP) was characterized using complementary analytical techniques, such as EDX, SEM, XRD and IR spectroscopy. The pre-sowing of soaked seeds of Zea mays in 1.00 µg/mL, 5.00 µg/mL and 10 µg/mL of TU-ANPs yielded growth under 0 mM, 60 mM and 100 mM osmotic stress of NaCl. The results show that Ca and P salt acted as precursors for the synthesis of ANPs at an alkaline pH of 10-11. Thiourea as a source of nitrogen stabilized the ANPs' suspension medium, leading to the synthesis of TU-ANPs. XRD diffraction analysis validated the crystalline nature of TU-ANPs with lattice dimensions of 29 nm, calculated from FWHM using the Sherrer equation. SEM revealed spherical morphology with polydispersion in size distribution. EDS confirmed the presence of Ca and P at a characteristic KeV, whereas IR spectroscopy showed certain stretches of binding functional groups associated with TU-ANPs. Seed priming with TU-ANPs standardized germination indices (T50, MGT, GI and GP) which were significantly declined by NaCl-based osmotic stress. Maximum values for biochemical parameters, such as sugar (39.8 mg/g at 10 µg/mL), protein (139.8 mg/g at 10 µg/mL) and proline (74.1 mg/g at 10 µg/mL) were recorded at different applied doses of TU-ANP. Antioxidant biosystems in the form of EC 1.11.1.6 catalase (11.34 IU/g FW at 10 µg/mL), EC 1.11.1.11 APX (0.95 IU/G FW at 10 µg/mL), EC 1.15.1.1 SOD (1.42 IU/g FW at 5 µg/mL), EC 1.11.1.7 POD (0.43 IU/g FW at 5 µg/mL) were significantly restored under osmotic stress. Moreover, photosynthetic pigments, such as chlorophyll A (2.33 mg/g at 5 µg/mL), chlorophyll B (1.99 mg/g at 5 µg/mL) and carotenoids (2.52 mg/g at 10 µg/mL), were significantly amplified under osmotic stress via the application of TU-ANPs. Hence, the application of TU-ANPs restores the growth performance of plants subjected to induced osmotic stress.


Assuntos
Antioxidantes , Zea mays , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Apatitas , Carotenoides , Catalase/metabolismo , Clorofila A , Nitrogênio , Pressão Osmótica , Fósforo , Prolina , Cloreto de Sódio , Açúcares , Superóxido Dismutase , Tioureia/farmacologia , Zea mays/metabolismo
13.
Front Plant Sci ; 13: 921668, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35968151

RESUMO

Soil salinity is the major abiotic stress that disrupts nutrient uptake, hinders plant growth, and threatens agricultural production. Plant growth-promoting rhizobacteria (PGPR) are the most promising eco-friendly beneficial microorganisms that can be used to improve plant responses against biotic and abiotic stresses. In this study, a previously identified B. thuringiensis PM25 showed tolerance to salinity stress up to 3 M NaCl. The Halo-tolerant Bacillus thuringiensis PM25 demonstrated distinct salinity tolerance and enhance plant growth-promoting activities under salinity stress. Antibiotic-resistant Iturin C (ItuC) and bio-surfactant-producing (sfp and srfAA) genes that confer biotic and abiotic stresses were also amplified in B. thuringiensis PM25. Under salinity stress, the physiological and molecular processes were followed by the over-expression of stress-related genes (APX and SOD) in B. thuringiensis PM25. The results detected that B. thuringiensis PM25 inoculation substantially improved phenotypic traits, chlorophyll content, radical scavenging capability, and relative water content under salinity stress. Under salinity stress, the inoculation of B. thuringiensis PM25 significantly increased antioxidant enzyme levels in inoculated maize as compared to uninoculated plants. In addition, B. thuringiensis PM25-inoculation dramatically increased soluble sugars, proteins, total phenols, and flavonoids in maize as compared to uninoculated plants. The inoculation of B. thuringiensis PM25 significantly reduced oxidative burst in inoculated maize under salinity stress, compared to uninoculated plants. Furthermore, B. thuringiensis PM25-inoculated plants had higher levels of compatible solutes than uninoculated controls. The current results demonstrated that B. thuringiensis PM25 plays an important role in reducing salinity stress by influencing antioxidant defense systems and abiotic stress-related genes. These findings also suggest that multi-stress tolerant B. thuringiensis PM25 could enhance plant growth by mitigating salt stress, which might be used as an innovative tool for enhancing plant yield and productivity.

14.
Plants (Basel) ; 11(3)2022 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-35161325

RESUMO

Salinity stress is a barrier to crop production, quality yield, and sustainable agriculture. The current study investigated the plant growth promotion, biochemical and molecular characterization of bacterial strain Enterobacter cloacae PM23 under salinity stress (i.e., 0, 300, 600, and 900 mM). E. cloacae PM23 showed tolerance of up to 3 M NaCl when subjected to salinity stress. Antibiotic-resistant Iturin C (ItuC) and bio-surfactant-producing genes (sfp and srfAA) were amplified in E. cloacae PM23, indicating its multi-stress resistance potential under biotic and abiotic stresses. Moreover, the upregulation of stress-related genes (APX and SOD) helped to mitigate salinity stress and improved plant growth. Inoculation of E. cloacae PM23 enhanced plant growth, biomass, and photosynthetic pigments under salinity stress. Bacterial strain E. cloacae PM23 showed distinctive salinity tolerance and plant growth-promoting traits such as indole-3-acetic acid (IAA), siderophore, ACC deaminase, and exopolysaccharides production under salinity stress. To alleviate salinity stress, E. cloacae PM23 inoculation enhanced radical scavenging capacity, relative water content, soluble sugars, proteins, total phenolic, and flavonoid content in maize compared to uninoculated (control) plants. Moreover, elevated levels of antioxidant enzymes and osmoprotectants (Free amino acids, glycine betaine, and proline) were noticed in E. cloacae PM23 inoculated plants compared to control plants. The inoculation of E. cloacae PM23 significantly reduced oxidative stress markers under salinity stress. These findings suggest that multi-stress tolerant E. cloacae PM23 could enhance plant growth by mitigating salt stress and provide a baseline and ecofriendly approach to address salinity stress for sustainable agriculture.

15.
Tumori ; 2016(3): 276-83, 2016 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-26391762

RESUMO

AIMS AND BACKGROUND: Improving survival has been documented for oral squamous cell carcinoma in recent years. It is a common malignancy in Pakistan but survival outcomes have not been reported. The objective of this study was to determine survival and identify independent predictors in patients with oral squamous cell cancer in 2 different time periods. METHODS: A retrospective review of patients who received treatment between 2003 and 2012 was performed. Patients were divided into two 5 year groups: group 1 (2003-2007) (n = 628) and group 2 (2008-2012) (n = 920). Demographics, risk factors, treatment approaches, and outcomes were compared. Disease-free and overall survival were calculated. Cox proportional hazard model was used to determine independent predictors of survival. RESULTS: A significant difference was present for ethnicity and grade and clinical T and N stage of tumors, with earlier presentation in group 2. More patients underwent surgery (p = 0.001) and had radical treatment intent (p<0.0001) in recent years. Induction chemotherapy (p<0.0001) and palliative chemotherapy (p<0.0001) were used more frequently. No significant difference in disease-free survival was observed but overall 5-year survival improved significantly (23% vs 42%) (p<0.0001). Use of palliative chemotherapy reduced risk of death significantly (hazard ratio [HR] 0.1, confidence interval [CI] 0.02-0.4, p = 0.003), while pathologic nodal positivity significantly increased the risk (HR 2.5, CI 1-5.9, p = 0.03). CONCLUSIONS: These results from a single cancer hospital demonstrate improvement in overall survival secondary to early detection, better patient selection, and use of palliative chemotherapy in the later period.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Carcinoma de Células Escamosas/mortalidade , Carcinoma de Células Escamosas/terapia , Recursos em Saúde/provisão & distribuição , Neoplasias Bucais/mortalidade , Neoplasias Bucais/terapia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Conscientização , Carcinoma de Células Escamosas/epidemiologia , Carcinoma de Células Escamosas/patologia , Quimiorradioterapia , Quimioterapia Adjuvante , Criança , Intervalo Livre de Doença , Feminino , Humanos , Estimativa de Kaplan-Meier , Metástase Linfática , Masculino , Pessoa de Meia-Idade , Mortalidade/tendências , Neoplasias Bucais/epidemiologia , Neoplasias Bucais/patologia , Estadiamento de Neoplasias , Paquistão/epidemiologia , Cuidados Paliativos/métodos , Valor Preditivo dos Testes , Radioterapia Adjuvante , Estudos Retrospectivos , Fatores de Risco , Autocuidado/tendências , Resultado do Tratamento
16.
Asian Pac J Cancer Prev ; 16(7): 2993-8, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25854395

RESUMO

BACKGROUND: Distance from anal verge and abdominoperineal resection are risk factors for circumferential resection margin (CRM) positivity in rectal cancer. Induction chemotherapy (IC) before concurrent chemoradiation (CRT) has emerged as a new treatment modification. Impact of IC before concurrent CRT on CRM positivity in low rectal cancer remains to be independently studied. The objective of this study was to determine CRM positivity in low rectal cancer, with and without prior IC, and to identify predictors of disease free and overall survival. MATERIALS AND METHODS: Patients who underwent surgery for rectal cancer between 2005 and 2011 were retrospectively reviewed and divided into two groups. Group 1 received IC before CRT and Group 2 did not. Demographics, clinicopathological variables and CRM status were compared. Actuarial 5 year disease free survival (DFS), overall survival (OS) and independent predictors of survival were determined. RESULTS: Patients in the IC group presented with advanced stage (Stage 3=89.2% versus 75.4%) (P=0.02) but a high rate of total mesorectal excision (TME) (100% versus 93.4%) (P=0.01) and sphincter preservation surgery (54.9 % versus 22.9%) (P=0.001). Patients with low rectal cancer who received IC had a significantly low positive CRM rate (9.2% versus 34%) (P=0.002). Actuarial 5 year DFS in IC and no IC groups were 39% and 43% (P=0.9) and 5 year OS were 70% and 47% (P=0.003). Pathological tumor size [HR: 2.2, CI: 1.1-4.5, P=0.01] and nodal involvement [HR: 2, CI: 1.08-4, P=0.02] were independent predictors of relapse while pathological nodal involvement [HR: 2.6, CI: 1.3-4.9, P=0.003] and IC [HR: 0.7, CI: 0.5-0.9, P=0.02] were independent predictors of death. CONCLUSIONS: In low rectal cancer, induction chemotherapy before CRT may significantly decrease CRM positivity and improve 5 year overall survival.


Assuntos
Neoplasias Retais/mortalidade , Neoplasias Retais/patologia , Abdome/patologia , Adulto , Quimiorradioterapia/métodos , Terapia Combinada/métodos , Procedimentos Cirúrgicos do Sistema Digestório/métodos , Intervalo Livre de Doença , Humanos , Quimioterapia de Indução/métodos , Masculino , Estadiamento de Neoplasias/métodos , Prognóstico , Neoplasias Retais/tratamento farmacológico , Neoplasias Retais/terapia , Estudos Retrospectivos
17.
Int J Surg ; 13: 65-70, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25475873

RESUMO

BACKGROUND: Retrieval of <12 lymph nodes after proctectomy and preoperative chemoradiation (C-XRT) may improve survival in good risk patients. The objective of this study was to determine impact of <12 retrieved lymph nodes and lymph node ratio (LNR) on survival in a population with certain poor prognostic features for rectal cancer. METHODS: Patients who underwent surgery for rectal adenocarcinoma between 2005 and 2011 were divided them into <12 or >12 lymph node groups. The LNR groups were based on interquartile range. Clinicopathological and treatment outcomes were compared. Expected 5 year disease free and overall survival was calculated. Cox proportional hazard model was used to determine independent predictors. RESULTS: More patients in <12 lymph nodes removed group had low tumors (<5 cm from anal verge) (75.5% versus 60.7%) (P=0.03) and underwent abdominoperineal resection (59.1% versus 42.9%) (P=0.02). Overall survival (OS) and disease free survival (DFS) was not different [(56% and 52% (P=0.7)] [(50% and 57% (P=0.5)]. LNR<0.15 was independent predictor of DFS while LNR ratio<0.12 for OS on multivariate analysis. CONCLUSION: LNR and not number of retrieved nodes impacts survival in younger patients with predominance of anorectal tumors after C-XRT. A specific LNR cutoff remains to be defined.


Assuntos
Adenocarcinoma/mortalidade , Excisão de Linfonodo/estatística & dados numéricos , Linfonodos/patologia , Neoplasias Retais/mortalidade , Adenocarcinoma/patologia , Adenocarcinoma/terapia , Adulto , Idoso , Quimiorradioterapia , Intervalo Livre de Doença , Feminino , Humanos , Excisão de Linfonodo/mortalidade , Linfonodos/cirurgia , Metástase Linfática , Masculino , Pessoa de Meia-Idade , Análise Multivariada , Estadiamento de Neoplasias , Proctoscopia , Prognóstico , Modelos de Riscos Proporcionais , Neoplasias Retais/patologia , Neoplasias Retais/terapia , Reto/cirurgia , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA