Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 830: 154764, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35341841

RESUMO

Since the 1950's much of the US soybean growing region has experienced rising temperatures, more variable rainfall, and increased carbon emissions. These trends are predicted to continue throughout the 21st century. Variable weather and weed interference influence crop performance; however, their combined effects on soybean yield are poorly understood. Using machine learning techniques on a database of herbicide trials spanning 28 years and 106 weather environments we modeled the most important relationships among weed control, weather variability, and crop management on soybean yield loss. When late-season weeds were poorly controlled, average soybean yield losses of 48% were observed. Additionally, when weeds were not completely controlled, low rainfall and high temperatures during seed fill exacerbated soybean yield loss due to weeds. Since much of the US soybean growing region is heading towards drier, warmer conditions, coupled with growing herbicide resistance, future soybean yield loss will increase without significant improvements in weed management systems.


Assuntos
Herbicidas , Controle de Plantas Daninhas , Resistência a Herbicidas , Herbicidas/toxicidade , Plantas Daninhas , Glycine max , Tempo (Meteorologia)
2.
Plant Cell Physiol ; 62(11): 1770-1785, 2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34453831

RESUMO

Herbicide resistance in weeds can be conferred by target-site and/or non-target-site mechanisms, such as rapid metabolic detoxification. Resistance to the very-long-chain fatty acid-inhibiting herbicide, S-metolachlor, in multiple herbicide-resistant populations (CHR and SIR) of waterhemp (Amaranthus tuberculatus) is conferred by rapid metabolism compared with sensitive populations. However, enzymatic pathways for S-metolachlor metabolism in waterhemp are unknown. Enzyme assays using S-metolachlor were developed to determine the specific activities of glutathione S-transferases (GSTs) and cytochrome P450 monooxygenases (P450s) from CHR and SIR seedlings to compare with tolerant corn and sensitive waterhemp (WUS). GST activities were greater (∼2-fold) in CHR and SIR compared to WUS but much less than corn. In contrast, P450s in microsomal extracts from CHR and SIR formed O-demethylated S-metolachlor, and their NADPH-dependent specific activities were greater (>20-fold) than corn or WUS. Metabolite profiles of S-metolachlor generated via untargeted and targeted liquid chromatography-mass spectrometry from CHR and SIR differed from WUS, with greater relative abundances of O-demethylated S-metolachlor and O-demethylated S-metolachlor-glutathione conjugates formed by CHR and SIR. In summary, our results demonstrate that S-metolachlor metabolism in resistant waterhemp involves Phase I and Phase II metabolic activities acting in concert, but the initial O-demethylation reaction confers resistance.


Assuntos
Acetamidas/farmacologia , Amaranthus/metabolismo , Resistência a Herbicidas , Herbicidas/farmacologia , Zea mays/metabolismo , Amaranthus/efeitos dos fármacos , Redes e Vias Metabólicas , Plantas Daninhas/efeitos dos fármacos , Plantas Daninhas/metabolismo , Zea mays/efeitos dos fármacos
3.
Glob Chang Biol ; 27(23): 6156-6165, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34420247

RESUMO

Both weed interference and adverse weather can cause significant maize yield losses. However, most climate change projections on maize yields ignore the fact that weeds are widespread in maize production. Herein, we examine the effects of weed control and weather variability on maize yield loss due to weeds by using machine learning techniques on an expansive database of herbicide efficacy trials spanning 205 weather environments and 27 years. Late-season control of all weed species was the most important driver of maize yield loss due to weeds according to multiple analyses. Average yield losses of 50% were observed with little to no weed control. Furthermore, when the highest levels of weed control were not achieved, drier, hotter conditions just before and during silking exacerbated maize yield losses due to weeds. Current climate predictions suggest much of the US maize-growing regions will experience warmer, drier summers. This, coupled with the growing prevalence of herbicide resistance, increases the risk of maize yield loss due to weeds in the future without transformational change in weed management systems.


Assuntos
Controle de Plantas Daninhas , Zea mays , Resistência a Herbicidas , Plantas Daninhas , Tempo (Meteorologia)
4.
Pest Manag Sci ; 77(6): 2683-2689, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33512060

RESUMO

BACKGROUND: By 2050, weather is expected to become more variable with a shift towards higher temperatures and more erratic rainfall throughout the U.S. Corn Belt. The effects of this predicted weather change on pre-emergence (PRE) herbicide efficacy have been inadequately explored. Using an extensive database, spanning 252 unique weather environments, the efficacy of atrazine, acetochlor, S-metolachlor, and mesotrione, applied PRE alone and in combinations, was modeled on common weed species in corn (Zea mays L.). RESULTS: Adequate rainfall to dissolve the herbicide into soil water solution so that it could be absorbed by developing weed seedlings within the first 15 days after PRE application was essential for effective weed control. Across three annual weed species, the probability of effective control increased as rainfall increased and was maximized when rainfall was 10 cm or more. When rainfall was less than 10 cm, increasing soil temperatures had either a positive or negative effect on the probability of effective control, depending on the herbicide(s) and weed species. Herbicide combinations required less rainfall to maximize the probability of effective control and had higher odds of successfully controlling weeds compared with the herbicides applied individually. CONCLUSIONS: Results of this study highlight the importance of rainfall following PRE herbicide application. As rainfall becomes more variable in future, the efficacy of common PRE herbicides will likely decline. However, utilizing combinations of PRE herbicides along with additional cultural, mechanical, biological, and chemical weed control methods will create a more sustainable integrated weed management system and help U.S. corn production adapt to more extreme weather. © 2021 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Atrazina , Herbicidas , Herbicidas/análise , Plantas Daninhas , Tempo (Meteorologia) , Controle de Plantas Daninhas , Zea mays
5.
Pest Manag Sci ; 76(9): 3139-3148, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32309896

RESUMO

BACKGROUND: Two waterhemp (Amaranthus tuberculatus) populations from Illinois demonstrating multiple-resistance to acetolactate synthase (ALS)-, 4-hydroxyphenylpyruvate dioxygenase, and photosystem II (PSII)-inhibiting herbicides (designated CHR and SIR) also displayed reduced sensitivity to very-long-chain fatty acid-inhibiting herbicides, including S-metolachlor. We hypothesized that a physiological mechanism, such as enhanced metabolism, could be responsible for the reduced efficacy of S-metolachlor. RESULTS: Metabolism experiments indicated that resistant populations degraded S-metolachlor more rapidly than sensitive populations and equally as rapidly as corn 2-24 h after treatment (HAT). Resistant waterhemp and corn metabolized 90% (DT90 ) of absorbed S-metolachlor in less than 3.2 h whereas DT90 values for sensitive waterhemp exceeded 6 h. The glutathione S-transferase inhibitor 4-chloro-7-nitrobenzofurazon and cytochrome P450-inhibitor malathion decreased the amount of S-metolachlor metabolized in resistant waterhemp at 4 HAT but not in sensitive waterhemp or corn, and altered the abundance of certain metabolites in resistant waterhemp. CONCLUSION: Results from this research demonstrate that resistance to S-metolachlor in these waterhemp populations is due to enhanced herbicide metabolism relative to sensitive populations. In addition, our results indicate that resistant waterhemp might utilize metabolic pathway(s) more intricate than either sensitive waterhemp or corn based on their metabolite profiles. © 2020 Society of Chemical Industry.


Assuntos
4-Hidroxifenilpiruvato Dioxigenase , Amaranthus , Herbicidas , Acetamidas , Resistência a Herbicidas , Herbicidas/farmacologia , Illinois
6.
Pest Manag Sci ; 74(11): 2424-2431, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29862629

RESUMO

BACKGROUND: Resistance of pathogens and pests to antibiotics and pesticides worldwide is rapidly reaching critical levels. The common-pool-resource nature of this problem (i.e. whereby the susceptibility to treatment of target organisms is a shared resource) has been largely overlooked. Using herbicide-resistant weeds as a model system, we developed a discrete-time landscape-scale simulation to investigate how aggregating herbicide management strategies at different spatial scales from individual farms to larger cooperative structures affects the evolution of glyphosate resistance in common waterhemp (Amaranthus tuberculatus). RESULTS: Our findings indicate that high-efficacy herbicide management strategies practiced at the farm scale are insufficient to slow resistance evolution in A. tuberculatus. When best practices were aggregated at large spatial scales, resistance evolution was hindered; conversely, when poor management practices were aggregated, resistance was exacerbated. Tank mixture-based strategies were more effective than rotation-based strategies in most circumstances, while applying glyphosate alone resulted in the poorest outcomes. CONCLUSIONS: Our findings highlight the importance of landscape-scale cooperative management for confronting common-pool-resource resistance problems in weeds and other analogous systems. © 2018 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Resistência a Herbicidas/genética , Plantas Daninhas/efeitos dos fármacos , Seleção Genética , Controle de Plantas Daninhas/métodos , Amaranthus/efeitos dos fármacos , Amaranthus/genética , Glicina/análogos & derivados , Glicina/farmacologia , Herbicidas/farmacologia , Modelos Biológicos , Plantas Daninhas/genética , Análise Espacial , Glifosato
7.
Plant Biotechnol J ; 15(10): 1238-1249, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28218978

RESUMO

Rapid detoxification of atrazine in naturally tolerant crops such as maize (Zea mays) and grain sorghum (Sorghum bicolor) results from glutathione S-transferase (GST) activity. In previous research, two atrazine-resistant waterhemp (Amaranthus tuberculatus) populations from Illinois, U.S.A. (designated ACR and MCR), displayed rapid formation of atrazine-glutathione (GSH) conjugates, implicating elevated rates of metabolism as the resistance mechanism. Our main objective was to utilize protein purification combined with qualitative proteomics to investigate the hypothesis that enhanced atrazine detoxification, catalysed by distinct GSTs, confers resistance in ACR and MCR. Additionally, candidate AtuGST expression was analysed in an F2 population segregating for atrazine resistance. ACR and MCR showed higher specific activities towards atrazine in partially purified ammonium sulphate and GSH affinity-purified fractions compared to an atrazine-sensitive population (WCS). One-dimensional electrophoresis of these fractions displayed an approximate 26-kDa band, typical of GST subunits. Several phi- and tau-class GSTs were identified by LC-MS/MS from each population, based on peptide similarity with GSTs from Arabidopsis. Elevated constitutive expression of one phi-class GST, named AtuGSTF2, correlated strongly with atrazine resistance in ACR and MCR and segregating F2 population. These results indicate that AtuGSTF2 may be linked to a metabolic mechanism that confers atrazine resistance in ACR and MCR.


Assuntos
Amaranthus/metabolismo , Atrazina , Glutationa Transferase/metabolismo , Herbicidas , Amaranthus/genética , Resistência a Herbicidas/genética , Fenótipo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Análise de Sequência de DNA
8.
Pest Manag Sci ; 72(1): 74-80, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25809409

RESUMO

BACKGROUND: Understanding and managing the evolutionary responses of pests and pathogens to control efforts is essential to human health and survival. Herbicide-resistant (HR) weeds undermine agricultural sustainability, productivity and profitability, yet the epidemiology of resistance evolution - particularly at landscape scales - is poorly understood. We studied glyphosate resistance in a major agricultural weed, Amaranthus tuberculatus (common waterhemp), using landscape, weed and management data from 105 central Illinois grain farms, including over 500 site-years of herbicide application records. RESULTS: Glyphosate-resistant (GR) A. tuberculatus occurrence was greatest in fields with frequent glyphosate applications, high annual rates of herbicide mechanism of action (MOA) turnover and few MOAs field(-1) year(-1) . Combining herbicide MOAs at the time of application by herbicide mixing reduced the likelihood of GR A. tuberculatus. CONCLUSIONS: These findings illustrate the importance of examining large-scale evolutionary processes at relevant spatial scales. Although measures such as herbicide mixing may delay GR or other HR weed traits, they are unlikely to prevent them. Long-term weed management will require truly diversified management practices that minimize selection for herbicide resistance traits.


Assuntos
Amaranthus/efeitos dos fármacos , Evolução Biológica , Glicina/análogos & derivados , Resistência a Herbicidas , Herbicidas/farmacologia , Plantas Daninhas/efeitos dos fármacos , Glicina/farmacologia , Illinois , Fatores de Risco , Glifosato
9.
Plant Physiol ; 163(1): 363-77, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23872617

RESUMO

Previous research reported the first case of resistance to mesotrione and other 4-hydroxyphenylpyruvate dioxygenase (HPPD) herbicides in a waterhemp (Amaranthus tuberculatus) population designated MCR (for McLean County mesotrione- and atrazine-resistant). Herein, experiments were conducted to determine if target site or nontarget site mechanisms confer mesotrione resistance in MCR. Additionally, the basis for atrazine resistance was investigated in MCR and an atrazine-resistant but mesotrione-sensitive population (ACR for Adams County mesotrione-sensitive but atrazine-resistant). A standard sensitive population (WCS for Wayne County herbicide-sensitive) was also used for comparison. Mesotrione resistance was not due to an alteration in HPPD sequence, HPPD expression, or reduced herbicide absorption. Metabolism studies using whole plants and excised leaves revealed that the time for 50% of absorbed mesotrione to degrade in MCR was significantly shorter than in ACR and WCS, which correlated with previous phenotypic responses to mesotrione and the quantity of the metabolite 4-hydroxy-mesotrione in excised leaves. The cytochrome P450 monooxygenase inhibitors malathion and tetcyclacis significantly reduced mesotrione metabolism in MCR and corn (Zea mays) excised leaves but not in ACR. Furthermore, malathion increased mesotrione activity in MCR seedlings in greenhouse studies. These results indicate that enhanced oxidative metabolism contributes significantly to mesotrione resistance in MCR. Sequence analysis of atrazine-resistant (MCR and ACR) and atrazine-sensitive (WCS) waterhemp populations detected no differences in the psbA gene. The times for 50% of absorbed atrazine to degrade in corn, MCR, and ACR leaves were shorter than in WCS, and a polar metabolite of atrazine was detected in corn, MCR, and ACR that cochromatographed with a synthetic atrazine-glutathione conjugate. Thus, elevated rates of metabolism via distinct detoxification mechanisms contribute to mesotrione and atrazine resistance within the MCR population.


Assuntos
Amaranthus/efeitos dos fármacos , Atrazina/farmacologia , Cicloexanonas/farmacologia , Resistência a Herbicidas/fisiologia , Herbicidas/farmacologia , Amaranthus/metabolismo , Atrazina/metabolismo , Cicloexanonas/metabolismo , Herbicidas/metabolismo , Inativação Metabólica , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo
10.
Pest Manag Sci ; 67(3): 258-61, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21308951

RESUMO

BACKGROUND: A population of waterhemp in a seed maize production field in central Illinois, United States, was not adequately controlled after post-emergence applications of herbicides that inhibit 4-hydroxyphenylpyruvate dioxygenase (HPPD). RESULTS: Progeny from the field population survived following treatment with mesotrione, tembotrione or topramezone applied to the foliage either alone or in combination with atrazine in greenhouse experiments. Dose-response experiments indicated that the level of resistance to the HPPD inhibitor mesotrione is at least tenfold relative to sensitive biotypes. CONCLUSION: These studies confirm that waterhemp has evolved resistance to HPPD-inhibiting herbicides.


Assuntos
4-Hidroxifenilpiruvato Dioxigenase/antagonistas & inibidores , Amaranthus/efeitos dos fármacos , Cicloexanonas/farmacologia , Herbicidas/farmacologia , Sulfonas/farmacologia , Amaranthus/enzimologia , Amaranthus/genética , Atrazina/química , Atrazina/farmacologia , Evolução Biológica , Cicloexanonas/química , Resistência a Medicamentos , Herbicidas/química , Illinois , Pirazóis/química , Pirazóis/farmacologia , Sulfonas/química
11.
J Agric Food Chem ; 59(11): 5808-12, 2011 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-21073196

RESUMO

Amaranthus tuberculatus is a major weed of crop fields in the midwestern United States. Making this weed particularly problematic to manage is its demonstrated ability to evolve resistance to herbicides. Herbicides to which A. tuberculatus has evolved resistance are photosystem II inhibitors, acetolactate synthase inhibitors, protoporphyrinogen oxidase inhibitors, and glyphosate. Many populations of A. tuberculatus contain more than one of these resistances, severely limiting the options for effective herbicide control. A survey of multiple-herbicide resistance in A. tuberculatus revealed that all populations resistant to glyphosate contained resistance to acetolactate synthase inhibitors, and 40% contained resistance to protoporphyrinogen oxidase inhibitors. The occurrences of multiple-herbicide resistances in A. tuberculatus illustrate the need for continued herbicide discovery efforts and/or the development of new strategies for weed management.


Assuntos
Amaranthus/efeitos dos fármacos , Resistência a Herbicidas , Herbicidas/farmacologia , Plantas Daninhas/efeitos dos fármacos , Controle de Plantas Daninhas/métodos , Amaranthus/crescimento & desenvolvimento , Plantas Daninhas/crescimento & desenvolvimento
12.
Proc Natl Acad Sci U S A ; 103(33): 12329-34, 2006 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-16894159

RESUMO

Herbicides that act by inhibiting protoporphyrinogen oxidase (PPO) are widely used to control weeds in a variety of crops. The first weed to evolve resistance to PPO-inhibiting herbicides was Amaranthus tuberculatus, a problematic weed in the midwestern United States that previously had evolved multiple resistances to herbicides inhibiting two other target sites. Evaluation of a PPO-inhibitor-resistant A. tuberculatus biotype revealed that resistance was a (incompletely) dominant trait conferred by a single, nuclear gene. Three genes predicted to encode PPO were identified in A. tuberculatus. One gene from the resistant biotype, designated PPX2L, contained a codon deletion that was shown to confer resistance by complementation of a hemG mutant strain of Escherichia coli grown in the presence and absence of the PPO inhibitor lactofen. PPX2L is predicted to encode both plastid- and mitochondria-targeted PPO isoforms, allowing a mutation in a single gene to confer resistance to two herbicide target sites. Unique aspects of the resistance mechanism include an amino acid deletion, rather than a substitution, and the dual-targeting nature of the gene, which may explain why resistance to PPO inhibitors has been rare.


Assuntos
Amaranthus/enzimologia , Códon , Herbicidas/metabolismo , Protoporfirinogênio Oxidase/antagonistas & inibidores , Amaranthus/genética , Sítios de Ligação , Teste de Complementação Genética , Éteres Difenil Halogenados , Modelos Moleculares , Dados de Sequência Molecular , Éteres Fenílicos/metabolismo , Protoporfirinogênio Oxidase/genética , Protoporfirinogênio Oxidase/metabolismo
13.
J Plant Physiol ; 163(4): 475-9, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16455361

RESUMO

Acetolactate synthase (ALS) catalyzes the first common step in the biosynthesis of branched-chain amino acids in plants and is the target of several herbicides. ALS inhibitors have enjoyed popularity as herbicides due to numerous attributes, although their current adequacy in weed control programs is hampered by herbicide resistance. Most cases of ALS-inhibitor resistance have resulted from selection of an altered target site. The study herein reports on an alanine by threonine amino acid substitution at position 122 of ALS as the basis for imidazolinone-specific resistance in an A. hybridus population from Illinois. In vitro inhibition of enzymatic activity (I(50)) required 1000-fold greater concentration of imazethapyr in the resistant population compared with a susceptible control. This mutation represents the second ALS alteration associated with herbicide resistance in a natural A. hybridus population.


Assuntos
Acetolactato Sintase/genética , Amaranthus/genética , Inibidores Enzimáticos/farmacologia , Herbicidas/farmacologia , Mutação , Acetolactato Sintase/antagonistas & inibidores , Amaranthus/efeitos dos fármacos , Amaranthus/enzimologia , Sequência de Aminoácidos , Resistência a Medicamentos , Herbicidas/antagonistas & inibidores , Illinois , Cinética , Dados de Sequência Molecular , Alinhamento de Sequência , Análise de Sequência de Proteína
14.
J Agric Food Chem ; 52(3): 474-8, 2004 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-14759135

RESUMO

Symptoms resembling off-target plant growth regulator (PGR) herbicide injury are frequently found in soybean fields, but the causal agent is often difficult to identify. The expression of GH3, an auxin-regulated soybean gene, was quantified from soybean leaves injured by PGR herbicides using real-time RT-PCR. Expression of GH3 was analyzed to ascertain its suitability for use in a diagnostic assay to determine whether PGR herbicides are the cause of injury. GH3 was highly induced by dicamba within 3 days after treatment (DAT) and remained high at 7 DAT, but induction was much lower at 17 DAT. GH3 was also highly induced at 7 DAT by dicamba + diflufenzopyr, and to a lesser extent by the other PGR herbicides clopyralid and 2,4-D. The non-PGR herbicides glyphosate, imazethapyr, and fomesafen did not significantly induce GH3 expression above a low constitutive level. These results indicate that a diagnostic assay for PGR herbicide injury based on overexpression of auxin-responsive genes is feasible, and that GH3 is a potential candidate from which a diagnostic assay could be developed. However, time course analysis of GH3 expression indicates the assay would be effective for a limited time after exposure to the herbicide.


Assuntos
Expressão Gênica/efeitos dos fármacos , Glycine max/metabolismo , Herbicidas/farmacologia , Reguladores de Crescimento de Plantas/farmacologia , Proteínas de Soja/genética , Folhas de Planta/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA