Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Orphanet J Rare Dis ; 19(1): 216, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38790019

RESUMO

BACKGROUND: Though next-generation sequencing (NGS) tests like exome sequencing (ES), genome sequencing (GS), and panels derived from exome and genome data (EGBP) are effective for rare diseases, the ideal diagnostic approach is debated. Limited research has explored reanalyzing raw ES and GS data post-negative EGBP results for diagnostics. RESULTS: We analyzed complete ES/GS raw sequencing data from Mayo Clinic's Program for Rare and Undiagnosed Diseases (PRaUD) patients to assess whether supplementary findings could augment diagnostic yield. ES data from 80 patients (59 adults) and GS data from 20 patients (10 adults), averaging 43 years in age, were analyzed. Most patients had renal (n=44) and auto-inflammatory (n=29) phenotypes. Ninety-six cases had negative findings and in four cases additional genetic variants were found, including a variant related to a recently described disease (RRAGD-related hypomagnesemia), a variant missed due to discordant inheritance pattern (COL4A3), a variant with high allelic frequency (NPHS2) in the general population, and a variant associated with an initially untargeted phenotype (HNF1A). CONCLUSION: ES and GS show diagnostic yields comparable to EGBP for single-system diseases. However, EGBP's limitations in detecting new disease-associated genes underscore the necessity for periodic updates.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Adulto , Feminino , Masculino , Pessoa de Meia-Idade , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Sequenciamento do Exoma/métodos , Exoma/genética , Adulto Jovem , Doenças Raras/genética , Doenças Raras/diagnóstico , Idoso , Adolescente , Sequenciamento Completo do Genoma/métodos
2.
Front Plant Sci ; 15: 1327390, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38328705

RESUMO

Introduction: Wheat stem sawfly (WSS), Cephus cinctus Norton, is a major pest of common bread wheat (Triticum aestivum L.) and other cultivated cereals in North America. Planting of cultivars with solid stems has been the primary management strategy to prevent yield loss due to WSS infestation, however expression of this phenotype can vary depending on environmental conditions and solid stems hinder biological control of WSS via braconid parasitoids Bracon cephi (Gahan) and Bracon lissogaster Muesebeck. In the hollow stems of oat (Avena sativa L.), WSS larvae experience 100% mortality before they reach late instars, but the mechanisms for this observed resistance have not been characterized. Objective: The objective of this study was to explore additional sources of resistance outside of the historic solid stem phenotype. Methods: Here, we use an untargeted metabolomics approach to examine the response of the metabolome of two cultivars of oat and four cultivars of spring wheat to infestation by WSS. Using liquid chromatography-mass spectrometry (LC-MS), differentially expressed metabolites were identified between oat and wheat which were associated with the phenylpropanoid pathway, phospholipid biosynthesis and signaling, the salicylic acid signaling pathway, indole-3-acetic acid (IAA) degradation, and biosynthesis of 1,4-benzoxazin-3-ones (Bxs). Several phospho- and galacto- lipids were found in higher abundance in oat, and with the exception of early stem solidness cultivar Conan, both species experienced a decrease in abundance once infested. In all wheat cultivars except Conan, an increase in abundance was observed for Bxs HMDBOA-glc and DIBOA-ß-D-glucoside after infestation, indicating that this pathway is involved in wheat response to infestation in both solid and hollow stemmed cultivars. Differences between species in compounds involved in IAA biosynthesis, degradation and inactivation suggest that wheat may respond to infestation by inactivating IAA or altering the IAA pool in stem tissue. Conclusion: We propose that the species differences found here likely affect the survival of WSS larvae and may also be associated with differences in stem architecture at the molecular level. Our findings suggest pathways to focus on for future studies in elucidating plant response to WSS infestation.

3.
Kidney Med ; 5(7): 100668, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37334143

RESUMO

As genetic testing is increasingly integrated into nephrology practice there is a growing need for partnership with genetic experts. Genetic counselors are ideally suited to fill this role. The value of genetic counseling is born out of the clinical value of genetic test results against the backdrop of the complexity of genetic testing. Genetic counselors who specialize in nephrology are trained to understand and explain the potential effects of genes on kidney disease, which can enable patients to make informed decisions about proceeding with genetic testing, navigating variants of uncertain significance, educating on extrarenal features of hereditary kidney disease, facilitating cascade testing, providing post-test education about testing results, and assisting with family planning. Genetic counselors can partner with the nephrologist and provide the knowledge needed to maximize the use of genetic testing for patients for nephrology consultation. Genetic counseling is more than an element or extension of genetic testing; it is a dynamic, shared conversation between the patient and the genetic counselor where concerns, sentiments, information, and education are exchanged, and value-based decision making is facilitated.

5.
BMC Nephrol ; 23(1): 253, 2022 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-35842573

RESUMO

BACKGROUND: Alport syndrome is a hereditary kidney disease characterized by hematuria and proteinuria. Although there have been reports of autosomal dominant COL4A4 variants, this is likely an underdiagnosed condition. Improved access to affordable genetic testing has increased the diagnosis of Alport syndrome. As genetic testing becomes ubiquitous, it is imperative that clinical nephrologists understand the benefits and challenges associated with clinical genetic testing. CASE PRESENTATION: We present a family of Mexican descent with a heterozygous COL4A4 variant (c.5007delC, ClinVar accession numbers: SCV001580980.2, SCV001993731.1) not previously discussed in detail in the literature. The proband received a biopsy diagnosis suggestive of Fabry disease 18 years after she first developed hematuria and progressed to chronic kidney disease stage III. One year later, the proband was provisionally diagnosed with Alport syndrome after a variant of uncertain significance in the COL4A4 gene was identified following targeted family variant testing of her daughter. Upon review of the medical histories of the proband's children and niece, all but one had the same variant. Of the four with the variant, three display clinical symptoms of hematuria, and/or proteinuria. The youngest of the four, only months old, has yet to exhibit clinical symptoms. Despite these findings there was a considerable delay in synthesizing this data, as patients were tested in different commercial genetic testing laboratories. Subsequently, understanding this family's inheritance pattern, family history, and clinical symptoms, as well as the location of the COL4A4 variant resulted in the upgrade of the variant's classification. Although the classification of this variant varied among different clinical genetic testing laboratories, the consensus was that this variant is likely pathogenic. CONCLUSIONS: This COL4A4 variant (c.5007delC) not yet discussed in detail in the literature is associated with Alport syndrome. The inheritance pattern is suggestive of autosomal dominant inheritance. This report highlights the intricacies of variant interpretation and classification, the siloed nature of commercial genetic testing laboratories, and the importance of a thorough family history for proper variant interpretation. Additionally, the cases demonstrate the varied clinical presentations of Alport syndrome and suggest the utility of early screening, diagnosis, monitoring, and treatment.


Assuntos
Colágeno Tipo IV , Nefrite Hereditária , Autoantígenos/genética , Criança , Colágeno Tipo IV/genética , Feminino , Hematúria/genética , Humanos , Nefrite Hereditária/diagnóstico , Nefrite Hereditária/genética , Nefrite Hereditária/patologia , Linhagem , Proteinúria
6.
Kidney Med ; 3(5): 785-798, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34746741

RESUMO

RATIONALE & OBJECTIVE: The etiology of kidney disease remains unknown in many individuals with chronic kidney disease (CKD). We created the Mayo Clinic Nephrology Genomics Clinic to improve our ability to integrate genomic and clinical data to identify the etiology of unexplained CKD. STUDY DESIGN: Retrospective study. SETTING & PARTICIPANTS: An essential component of our program is the Nephrology Genomics Board which consists of nephrologists, geneticists, pathologists, translational omics scientists, and trainees who interpret the patient's clinical and genetic data. Since September 2016, the Board has reviewed 163 cases (15 cystic, 100 glomerular, 6 congenital anomalies of kidney and urinary tract (CAKUT), 20 stones, 15 tubulointerstitial, and 13 other). ANALYTICAL APPROACH: Testing was performed with targeted panels, single gene analysis, or analysis of kidney-related genes from exome sequencing. Variant classification was obtained based on the 2015 American College of Medical Genetics and Genomics and the Association for Molecular Pathology guidelines. RESULTS: A definitive genetic diagnosis was achieved for 50 families (30.7%). The highest diagnostic yield was obtained in individuals with tubulointerstitial diseases (53.3%), followed by congenital anomalies of the kidney and urological tract (33.3%), glomerular (31%), cysts (26.7%), stones (25%), and others (15.4%). A further 20 (12.3%) patients had variants of interest, and variant segregation, and research activities (exome, genome, or transcriptome sequencing) are ongoing for 44 (40%) unresolved families. LIMITATIONS: Possible overestimation of diagnostic rate due to inclusion of individuals with variants with evidence of pathogenicity but classified as of uncertain significance by the clinical laboratory. CONCLUSIONS: Integration of genomic and research testing and multidisciplinary evaluation in a nephrology cohort with CKD of unknown etiology or suspected monogenic disease provided a diagnosis in a third of families. These diagnoses had prognostic implications, and often changes in management were implemented.

7.
Funct Integr Genomics ; 21(3-4): 355-366, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33710467

RESUMO

Genome editing can be used to create new wheat varieties with enhanced performance. Clustered regularly interspaced short palindromic repeat (CRISPR) is a powerful tool for knockout generation, precise modification, multiplex engineering, and the activation and repression of target genes. Targeted mutagenesis via RNA-guided genome editing using type II CRISPR-Cas9 is highly efficient in some plant species, but not in others. One possible solution is to use newly discovered variants of genome editing enzymes such as the class 2 system component Cpf1 (CRISPR from Prevotella and Francisella 1) in place of the more commonly used Cas9. We compared the editing efficiency of Cas9 and two Cpf1 orthologs, AsCpf1 (Acidaminococcus spp. BV3L6) and LbCpf1 (Lachnospiraceae bacterium ND2006) in wheat (Triticum aestivum). LbCpf1 had a higher editing efficiency for the target gene TaPDS than AsCpf1 and Cas9, and Cas9 induced more off-target mutations than AsCpf1 and LbCpf1, suggesting that CRISPR-LbCpf1 is a powerful genome editing tool for polyploid plants such as wheat.


Assuntos
Proteína 9 Associada à CRISPR , Sistemas CRISPR-Cas , Endonucleases , Edição de Genes , Genoma de Planta , Triticum , Proteína 9 Associada à CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , Endonucleases/genética , Endonucleases/metabolismo , Edição de Genes/métodos , Triticum/genética , Triticum/metabolismo
8.
Am J Med Genet A ; 185(6): 1883-1887, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33779033

RESUMO

Noonan syndrome (NS) is an autosomal dominant condition with variable expressivity most commonly due to a germline pathogenic variant in PTPN11, which encodes the protein tyrosine phosphatase SHP-2. Gain-of-function variants in PTPN11 are known to promote oncogenic behavior in affected tissues. We report the clinical description of a young adult male presenting with relapsing ganglioneuromas, dysmorphic features, cardiac abnormalities, and multiple lentigines, strongly suspicious for NS. Solid tumor testing identified the recurrent pathogenic c.922G>A (p.Asn308Asp) in PTPN11. Proband and parental blood sampling testing confirmed c.922G>A as a de novo germline alteration. Comprehensive literature review of solid tumors specifically associated to PTPN11, indicates that this is the first documentation of ganglioneuroma and its clinical recurrence after resection in conjunction with a genetically confirmed NS diagnosis. The findings in our patient further extend the list of neuroblastic and neural crest-derived neoplasms associated with this condition.


Assuntos
Ganglioneuroma/genética , Cardiopatias Congênitas/genética , Síndrome de Noonan/genética , Proteína Tirosina Fosfatase não Receptora Tipo 11/genética , Ganglioneuroma/patologia , Predisposição Genética para Doença , Cardiopatias Congênitas/patologia , Humanos , Masculino , Mutação de Sentido Incorreto/genética , Recidiva Local de Neoplasia/genética , Síndrome de Noonan/patologia , Fenótipo , Adulto Jovem
9.
Genet Med ; 23(3): 498-507, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33144682

RESUMO

PURPOSE: Exome sequencing often identifies pathogenic genetic variants in patients with undiagnosed diseases. Nevertheless, frequent findings of variants of uncertain significance necessitate additional efforts to establish causality before reaching a conclusive diagnosis. To provide comprehensive genomic testing to patients with undiagnosed disease, we established an Individualized Medicine Clinic, which offered clinical exome testing and included a Translational Omics Program (TOP) that provided variant curation, research activities, or research exome sequencing. METHODS: From 2012 to 2018, 1101 unselected patients with undiagnosed diseases received exome testing. Outcomes were reviewed to assess impact of the TOP and patient characteristics on diagnostic rates through descriptive and multivariate analyses. RESULTS: The overall diagnostic yield was 24.9% (274 of 1101 patients), with 174 (15.8% of 1101) diagnosed on the basis of clinical exome sequencing alone. Four hundred twenty-three patients with nondiagnostic or without access to clinical exome sequencing were evaluated by the TOP, with 100 (9% of 1101) patients receiving a diagnosis, accounting for 36.5% of the diagnostic yield. The identification of a genetic diagnosis was influenced by the age at time of testing and the disease phenotype of the patient. CONCLUSION: Integration of translational research activities into clinical practice of a tertiary medical center can significantly increase the diagnostic yield of patients with undiagnosed disease.


Assuntos
Exoma , Doenças não Diagnosticadas , Exoma/genética , Testes Genéticos , Humanos , Fenótipo , Pesquisa Translacional Biomédica , Sequenciamento do Exoma
10.
JAMA Oncol ; 7(2): 230-237, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33126242

RESUMO

IMPORTANCE: Hereditary factors play a key role in the risk of developing several cancers. Identification of a germline predisposition can have important implications for treatment decisions, risk-reducing interventions, cancer screening, and germline testing. OBJECTIVE: To examine the prevalence of pathogenic germline variants (PGVs) in patients with cancer using a universal testing approach compared with targeted testing based on clinical guidelines and the uptake of cascade family variant testing (FVT). DESIGN, SETTING, AND PARTICIPANTS: This prospective, multicenter cohort study assessed germline genetic alterations among patients with solid tumor cancer receiving care at Mayo Clinic cancer centers and a community practice between April 1, 2018, and March 31, 2020. Patients were not selected based on cancer type, disease stage, family history of cancer, ethnicity, or age. EXPOSURES: Germline sequencing using a greater than 80-gene next-generation sequencing platform. MAIN OUTCOMES AND MEASURES: Proportion of PGVs detected with a universal strategy compared with a guideline-directed approach and uptake of cascade FVT in families. RESULTS: A total of 2984 patients (mean [SD] age, 61.4 [12.2] years; 1582 [53.0%] male) were studied. Pathogenic germline variants were found in 397 patients (13.3%), including 282 moderate- and high-penetrance cancer susceptibility genes. Variants of uncertain significance were found in 1415 patients (47.4%). A total of 192 patients (6.4%) had incremental clinically actionable findings that would not have been detected by phenotype or family history-based testing criteria. Of those with a high-penetrance PGV, 42 patients (28.2%) had modifications in their treatment based on the finding. Only younger age of diagnosis was associated with presence of PGV. Only 70 patients (17.6%) with PGVs had family members undergoing no-cost cascade FVT. CONCLUSIONS AND RELEVANCE: This prospective, multicenter cohort study found that universal multigene panel testing among patients with solid tumor cancer was associated with an increased detection of heritable variants over the predicted yield of targeted testing based on guidelines. Nearly 30% of patients with high-penetrance variants had modifications in their treatment. Uptake of cascade FVT was low despite being offered at no cost.


Assuntos
Mutação em Linhagem Germinativa , Síndromes Neoplásicas Hereditárias , Estudos de Coortes , Predisposição Genética para Doença , Testes Genéticos , Humanos , Masculino , Síndromes Neoplásicas Hereditárias/diagnóstico , Síndromes Neoplásicas Hereditárias/genética , Estudos Prospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA